157 research outputs found
Regulation and Classification of voltage dips
The impact of voltage dips on industrial installations can be very high. However, regulation within the European Standard EN 50160 is not detailed as the cells within the general table are not filled. As there is no reference on the expected number of voltage dips, the responsibilities for network operator and customer are unclear. Therefore the customers face challenges to make analysis on required mitigation measures. The Dutch Regulator requested the network operators to prepare a proposal for a regulatory framework regarding voltage dips. This paper presents the initial proposal for the MV distribution network. Based on the effect of various types of voltage dips to the reduction of active-power for aggregated customers, voltage dip severity weighting factors are developed and used to build the proposal
Treatment of rectal war wounds
Treatment strategies for penetrating rectal injuries (PRI) in civilian settings are still not uniformly agreed, in part since high-energy transfer PRI, such as is frequently seen in military settings, are not taken into account. Here, we describe three cases of PRI, treated in a deployed combat environment, and outline the management strategies successfully employed. We also discuss the literature regarding PRI management. Whe
The Effect of Keyboard-Based Word Processing on Students With Different Working Memory Capacity During the Process of Academic Writing
This study addresses the current debate about the beneficial effects of text processing software on students with different working memory (WM) during the process of academic writing, especially with regard to the ability to display higher-level conceptual thinking. A total of 54 graduate students (15 male, 39 female) wrote one essay by hand and one by keyboard. Our results show a beneficial effect of text processing software, in terms of both the qualitative and quantitative writing output. A hierarchical cluster analysis was used to detect distinct performance groups in the sample. These performance groups mapped onto three differing working memory profiles. The groups with higher mean WM scores manifested superior writing complexity using a keyboard, in contrast to the cluster with the lowest mean WM. The results also point out that more revision during the writing process itself does not inevitably reduce the quality of the final output
Stimulated monocyte IL-6 secretion predicts survival of patients with head and neck squamous cell carcinoma
<p>Abstract</p> <p>Background</p> <p>This study was performed in order to determine whether monocyte <it>in vitro </it>function is associated with presence, stage and prognosis of head and neck squamous cell carcinoma (HNSCC) disease.</p> <p>Methods</p> <p>Prospective study describing outcome, after at least five years observation, of patients treated for HNSCC disease in relation to their monocyte function. Sixty-five patients with newly diagnosed HNSCC and eighteen control patients were studied. Monocyte responsiveness was assessed by measuring levels of monocyte <it>in vitro </it>interleukin (IL)-6 and monocyte chemotactic peptide (MCP)-1 secretion after 24 hours of endotoxin stimulation in cultures supplied either with 20% autologous serum (AS) or serum free medium (SFM). Survival, and if relevant, cause of death, was determined at least 5 years following primary diagnosis.</p> <p>Results</p> <p>All patients, as a group, had higher <it>in vitro </it>monocyte responsiveness in terms of IL-6 (AS) (<it>t </it>= 2.03; <it>p </it>< 0.05) and MCP-1 (SFM) (<it>t </it>= 2.49; <it>p </it>< 0.05) compared to controls. Increased <it>in vitro </it>monocyte IL-6 endotoxin responsiveness under the SFM condition was associated with decreased survival rate (Hazard ratio (HR) = 2.27; Confidence interval (CI) = 1.05–4.88; <it>p </it>< 0.05). The predictive value of monocyte responsiveness, as measured by IL-6, was also retained when adjusted for age, gender and disease stage of patients (HR = 2.67; CI = 1.03–6.92; <it>p </it>< 0.05). With respect to MCP-1, low endotoxin-stimulated responsiveness (AS), analysed by Kaplan-Meier method, predicted decreased survival (χ = 4.0; <it>p </it>< 0.05).</p> <p>Conclusion</p> <p>In HNSCC patients, changed monocyte <it>in vitro </it>response to endotoxin, as measured by increased IL-6 (SFM) and decreased MCP-1 (AS) responsiveness, are negative prognostic factors.</p
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
A Novel DC Therapy with Manipulation of MKK6 Gene on Nickel Allergy in Mice
BACKGROUND: Although the activation of dermal dendritic cells (DCs) or Langerhans cells (LCs) via p38 mitogen-activated protein kinase (MAPK) plays a crucial role in the pathogenesis of metal allergy, the in vivo molecular mechanisms have not been identified and a possible therapeutic strategy using the control of dermal DCs or LCs has not been established. In this study, we focused on dermal DCs to define the in vivo mechanisms of metal allergy pathogenesis in a mouse nickel (Ni) allergy model. The effects of DC therapy on Ni allergic responses were also investigated. METHODS AND FINDING: The activation of dermal DCs via p38 MAPK triggered a T cell-mediated allergic immune response in this model. In the MAPK signaling cascade in DCs, Ni potently phosphorylated MAP kinase kinase 6 (MKK6) following increased DC activation. Ni-stimulated DCs could prime T cell activation to induce Ni allergy. Interestingly, when MKK6 gene-transfected DCs were transferred into the model mice, a more pronounced allergic reaction was observed. In addition, injection of short interfering (si) RNA targeting the MKK6 gene protected against a hypersensitivity reaction after Ni immunization. The cooperative action between T cell activation and MKK6-mediated DC activation by Ni played an important role in the development of Ni allergy. CONCLUSIONS: DC activation by Ni played an important role in the development of Ni allergy. Manipulating the MKK6 gene in DCs may be a good therapeutic strategy for dermal Ni allergy
Folic Acid Exposure Rescues Spina Bifida Aperta Phenotypes in Human Induced Pluripotent Stem Cell Model
Neural tube defects (NTDs) are severe congenital abnormalities, caused by failed closure of neural tube during early embryonic development. Periconceptional folic acid (FA) supplementation greatly reduces the risk of NTDs. However, the molecular mechanisms behind NTDs and the preventive role of FA remain unclear. Here, we use human induced pluripotent stem cells (iPSCs) derived from fetuses with spina bifida aperta (SBA) to study the pathophysiology of NTDs and explore the effects of FA exposure. We report that FA exposure in SBA model is necessary for the proper formation and maturation of neural tube structures and robust differentiation of mesodermal derivatives. Additionally, we show that the folate antagonist methotrexate dramatically affects the formation of neural tube structures and FA partially reverts this aberrant phenotype. In conclusion, we present a novel model for human NTDs and provide evidence that it is a powerful tool to investigate the molecular mechanisms underlying NTDs, test drugs for therapeutic approaches
Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo
Abstract Background Medulloblastoma is a highly malignant pediatric brain tumor that requires surgery, whole brain and spine irradiation, and intense chemotherapy for treatment. A more sophisticated understanding of the pathophysiology of medulloblastoma is needed to successfully reduce the intensity of treatment and improve outcomes. Nuclear factor kappa-B (NFκB) is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. Methods To test the importance of NFκB to medulloblastoma cell growth, the effects of multiple drugs that inhibit NFκB, pyrrolidine dithiocarbamate, diethyldithiocarbamate, sulfasalazine, curcumin and bortezomib, were studied in medulloblastoma cell lines compared to a malignant glioma cell line and normal neurons. Expression of endogenous NFκB was investigated in cultured cells, xenograft flank tumors, and primary human tumor samples. A dominant negative construct for the endogenous inhibitor of NFκB, IκB, was prepared from medulloblastoma cell lines and flank tumors were established to allow specific pathway inhibition. Results We report high constitutive activity of the canonical NFκB pathway, as seen by Western analysis of the NFκB subunit p65, in medulloblastoma tumors compared to normal brain. The p65 subunit of NFκB is extremely highly expressed in xenograft tumors from human medulloblastoma cell lines; though, conversely, the same cells in culture have minimal expression without specific stimulation. We demonstrate that pharmacological inhibition of NFκB in cell lines halts proliferation and leads to apoptosis. We show by immunohistochemical stain that phosphorylated p65 is found in the majority of primary tumor cells examined. Finally, expression of a dominant negative form of the endogenous inhibitor of NFκB, dnIκB, resulted in poor xenograft tumor growth, with average tumor volumes 40% smaller than controls. Conclusions These data collectively demonstrate that NFκB signaling is important for medulloblastoma tumor growth, and that inhibition can reduce tumor size and viability in vivo. We discuss the implications of NFκB signaling on the approach to managing patients with medulloblastoma in order to improve clinical outcomes.</p
Models Analyses for Allelopathic Effects of Chicory at Equivalent Coupling of Nitrogen Supply and pH Level on F. arundinacea, T. repens and M. sativa
Alllelopathic potential of chicory was investigated by evaluating its effect on seed germination, soluble sugar, malondialdehyde (MDA) and the chlorophyll content of three target plants species (Festuca arundinacea, Trifolium repens and Medicago sativa). The secretion of allelochemicals was regulated by keeping the donor plant (chicory) separate from the three target plant species and using different pH and nitrogen levels. Leachates from donor pots with different pH levels and nitrogen concentrations continuously irrigated the target pots containing the seedlings. The allelopathic effects of the chicory at equivalent coupling of nitrogen supply and pH level on the three target plants species were explored via models analyses. The results suggested a positive effect of nitrogen supply and pH level on allelochemical secretion from chicory plants. The nitrogen supply and pH level were located at a rectangular area defined by 149 to 168 mg/l nitrogen supply combining 4.95 to 7.0 pH value and point located at nitrogen supply 177 mg/l, pH 6.33 when they were in equivalent coupling effects; whereas the inhibitory effects of equivalent coupling nitrogen supply and pH level were located at rectangular area defined by 125 to 131 mg/l nitrogen supply combining 6.71 to 6.88 pH value and two points respectively located at nitrogen supply 180 mg/l with pH 6.38 and nitrogen supply 166 mg/l with pH 7.59. Aqueous extracts of chicory fleshy roots and leaves accompanied by treatment at different sand pH values and nitrogen concentrations influenced germination, seedling growth, soluble sugar, MDA and chlorophyll of F. arundinacea, T. repens and M. sativa. Additionally, we determined the phenolics contents of root and leaf aqueous extracts, which were 0.104% and 0.044% on average, respectively
- …