422 research outputs found

    Isolation, Identification and Screening of the Yeast Flora from Indian Cashew Apple for Sugar and Ethanol Tolerance

    Get PDF
    Cashew apple juice is rich in fermentable sugars, minerals and vitamins, which makes it a suitable substrate for production of alcoholic beverages. In the present research work, indigenous flora of cashew apple (Indian variety) was studied. Seven morphologically different strains of Candida spp. were identified and checked for their sugar and ethanol tolerance. All seven isolates were able to tolerate sugar concentrations up to 25% but varied in their ethanol tolerance. Based on the above results it can be concluded that a high sugar and ethanol tolerant Candida spp. could be used as starter culture for commercial production of alcoholic beverages from cashew apple

    Tunable hybrid surface waves supported by a graphene layer

    Full text link
    We study surface waves localized near a surface of a semi-infinite dielectric medium covered by a layer of graphene in the presence of a strong external magnetic field. We demonstrate that both TE-TM hybrid surface plasmons can propagate along the graphene surface. We analyze the effect of the Hall conductivity on the disper- sion of hybrid surface waves and suggest a possibility to tune the plasmon dispersion by the magnetic field.Comment: 3 pages, 3 figure

    Electric Levitation Using ε-Near-Zero Metamaterials

    Get PDF
    [EN] The ability to manufacture metamaterials with exotic electromagnetic properties has potential for surprising new applications. Here we report how a specific type of metamaterial-one whose permittivity is near zero-exerts a repulsive force on an electric dipole source, resulting in levitation of the dipole. The phenomenon relies on the expulsion of the time-varying electric field from the metamaterial interior, resembling the perfect diamagnetic expulsion of magnetostatic fields. Leveraging this concept, we study some realistic requirements for the levitation or repulsion of a polarized particle radiating at any frequency, from microwave to optics.This work is supported in part by the US Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) Grant No. N00014-10-1-0942. F. J. R.-F. acknowledges financial support from Grant FPI of GV and the Spanish MICINN under Contracts No. CONSOLIDER EMET CSD2008-00066 and No. TEC2011-28664-C02-02.Rodríguez Fortuño, FJ.; Vakil, A.; Engheta, N. (2014). Electric Levitation Using ε-Near-Zero Metamaterials. Physical Review Letters. 112(3):33902-1-33902-5. https://doi.org/10.1103/PhysRevLett.112.033902S33902-133902-5112

    Triaxial projected shell model study of gamma-vibrational bands in even-even Er isotopes

    Full text link
    We expand the triaxial projected shell model basis to include triaxially-deformed multi-quasiparticle states. This allows us to study the yrast and gamma-vibrational bands up to high spins for both gamma-soft and well-deformed nuclei. As the first application, a systematic study of the high-spin states in Er-isotopes is performed. The calculated yrast and gamma-bands are compared with the known experimental data, and it is shown that the agreement between theory and experiment is quite satisfactory. The calculation leads to predictions for bands based on one- and two-gamma phonon where current data are still sparse. It is observed that gamma-bands for neutron-deficient isotopes of 156Er and 158Er are close to the yrast band, and further these bands are predicted to be nearly degenerate for high-spin states.Comment: 6 pages, 9 figure

    Intrinsic Terahertz Plasmons and Magnetoplasmons in Large Scale Monolayer Graphene

    Get PDF
    We show that in graphene epitaxially grown on SiC the Drude absorption is transformed into a strong terahertz plasmonic peak due to natural nanoscale inhomogeneities, such as substrate terraces and wrinkles. The excitation of the plasmon modifies dramatically the magneto-optical response and in particular the Faraday rotation. This makes graphene a unique playground for plasmon-controlled magneto-optical phenomena thanks to a cyclotron mass 2 orders of magnitude smaller than in conventional plasmonic materials such as noble metals.Comment: to appear in Nano Letter

    Resonant Visible Light Modulation with Graphene

    Get PDF
    Fast modulation and switching of light at visible and near-infrared (vis-NIR) frequencies is of utmost importance for optical signal processing and sensing technologies. No fundamental limit appears to prevent us from designing wavelength-sized devices capable of controlling the light phase and intensity at gigaherts (and even terahertz) speeds in those spectral ranges. However, this problem remains largely unsolved, despite recent advances in the use of quantum wells and phase-change materials for that purpose. Here, we explore an alternative solution based upon the remarkable electro-optical properties of graphene. In particular, we predict unity-order changes in the transmission and absorption of vis-NIR light produced upon electrical doping of graphene sheets coupled to realistically engineered optical cavities. The light intensity is enhanced at the graphene plane, and so is its absorption, which can be switched and modulated via Pauli blocking through varying the level of doping. Specifically, we explore dielectric planar cavities operating under either tunneling or Fabry-Perot resonant transmission conditions, as well as Mie modes in silicon nanospheres and lattice resonances in metal particle arrays. Our simulations reveal absolute variations in transmission exceeding 90% as well as an extinction ratio >15 dB with small insertion losses using feasible material parameters, thus supporting the application of graphene in fast electro-optics at vis-NIR frequencies.Comment: 17 pages, 13 figures, 54 reference

    Mid-infrared plasmons in scaled graphene nanostructures

    Full text link
    Plasmonics takes advantage of the collective response of electrons to electromagnetic waves, enabling dramatic scaling of optical devices beyond the diffraction limit. Here, we demonstrate the mid-infrared (4 to 15 microns) plasmons in deeply scaled graphene nanostructures down to 50 nm, more than 100 times smaller than the on-resonance light wavelength in free space. We reveal, for the first time, the crucial damping channels of graphene plasmons via its intrinsic optical phonons and scattering from the edges. A plasmon lifetime of 20 femto-seconds and smaller is observed, when damping through the emission of an optical phonon is allowed. Furthermore, the surface polar phonons in SiO2 substrate underneath the graphene nanostructures lead to a significantly modified plasmon dispersion and damping, in contrast to a non-polar diamond-like-carbon (DLC) substrate. Much reduced damping is realized when the plasmon resonance frequencies are close to the polar phonon frequencies. Our study paves the way for applications of graphene in plasmonic waveguides, modulators and detectors in an unprecedentedly broad wavelength range from sub-terahertz to mid-infrared.Comment: submitte

    BGWM as Second Constituent of Complex Matrix Model

    Full text link
    Earlier we explained that partition functions of various matrix models can be constructed from that of the cubic Kontsevich model, which, therefore, becomes a basic elementary building block in "M-theory" of matrix models. However, the less topical complex matrix model appeared to be an exception: its decomposition involved not only the Kontsevich tau-function but also another constituent, which we now identify as the Brezin-Gross-Witten (BGW) partition function. The BGW tau-function can be represented either as a generating function of all unitary-matrix integrals or as a Kontsevich-Penner model with potential 1/X (instead of X^3 in the cubic Kontsevich model).Comment: 42 page

    Targeted antimicrobial activity of a specific IgG–SMAP28 conjugate against Porphyromonas gingivalis in a mixed culture

    Get PDF
    Antimicrobial peptides coupled to a ligand, receptor or antibody for a specific pathogenic bacteria could be used to develop narrow-spectrum pharmaceuticals with ‘targeted’ antimicrobial activity void of adverse reactions often associated with the use of broad-spectrum antibiotics. To assess the feasibility of this approach, in this study sheep myeloid antimicrobial peptide (SMAP) 28 was linked to affinity- and protein G-purified rabbit immunoglobulin G (IgG) antibodies specific to the outer surface of Porphyromonas gingivalis strain 381. The selective activity of the P. gingivalis IgG–SMAP28 conjugate was then assessed by adding it to an artificially generated microbial community containing P. gingivalis, Aggregatibacter actinomycetemcomitans and Peptostreptococcus micros. The specificity of the P. gingivalis IgG–SMAP28 conjugate in this mixed culture was concentration-dependent. The conjugate at 50 μg protein/mL lacked specificity and killed P. gingivalis, A. actinomycetemcomitans and P. micros. The conjugate at 20 μg protein/mL was more specific and killed P. gingivalis. This is an initial step to develop a selective antimicrobial agent that can eliminate a specific periodontal pathogen, such as P. gingivalis, from patients with periodontal disease without harming the normal commensal flora
    • …
    corecore