9 research outputs found

    Detailed dimethylacetal and fatty acid composition of rumen content from lambs fed lucerne or concentrate supplemented with soybean oil

    Get PDF
    Articles in International JournalsLipid metabolism in the rumen is responsible for the complex fatty acid profile of rumen outflow compared with the dietary fatty acid composition, contributing to the lipid profile of ruminant products. A method for the detailed dimethylacetal and fatty acid analysis of rumen contents was developed and applied to rumen content collected from lambs fed lucerne or concentrate based diets supplemented with soybean oil. The methodological approach developed consisted on a basic/ acid direct transesterification followed by thin-layer chromatography to isolate fatty acid methyl esters from dimethylacetal, oxo- fatty acid and fatty acid dimethylesters. The dimethylacetal composition was quite similar to the fatty acid composition, presenting even-, odd- and branched-chain structures. Total and individual odd- and branched-chain dimethylacetals were mostly affected by basal diet. The presence of 18:1 dimethylacetals indicates that biohydrogenation intermediates might be incorporated in structural microbial lipids. Moreover, medium-chain fatty acid dimethylesters were identified for the first time in the rumen content despite their concentration being relatively low. The fatty acids containing 18 carbon-chain lengths comprise the majority of the fatty acids present in the rumen content, most of them being biohydrogenation intermediates of 18:2n26 and 18:3n23. Additionally, three oxo- fatty acids were identified in rumen samples, and 16-O-18:0 might be produced during biohydrogenation of the 18:3n23

    Total Lipids of Sarda Sheep Meat that Include the Fatty Acid and Alkenyl Composition and the CLA and Trans-18:1 Isomers

    No full text
    The total lipids of the longissimus dorsi muscle were analyzed from commercial adult Sarda sheep in Sardina taken from local abattoirs, and in the subsequent year from three local farms in the Sassari region that provided some information on the amount and type of supplements fed to the pasture-fed sheep. The complete lipid analysis of sheep meat included the fatty acids from O-acyl and N-acyl lipids, including the trans- and conjugated linoleic acid (CLA) isomers and the alk-1-enyl ethers from the plasmalogenic lipids. This analysis required the use of a combination of acid- and base-catalyzed methylation procedures, the former to quantitate the O-acyl, N-acyl and alkenyl ethers, and the latter to determine the content of CLA isomers and their metabolites. A combination of gas chromatographic and silver-ion separation techniques was necessary to quantitate all of the meat lipid constituents, which included a prior separation of the trans-octadecenoic acids (18:1) and a separation of fatty acid methyl esters and the dimethylacetals (DMAs) from the acyl and alk-1-enyl ethers, respectively. The alk-1-enyl moieties of the DMAs were analyzed as their stable cyclic acetals. In general, about half of the meat lipids were triacylglycerols, even though excess fat was trimmed from the meat. The higher fat content in the meat appears to be related to the older age of these animals. The variation in the trans-18:1 and CLA isomer profiles of the Sarda sheep obtained from the abattoirs was much greater than in the profiles from the sheep from the three selected farms. Higher levels of 10t-18:1, 7t9c-18:2, 9t11c-18:2 and 10t12c-18:2 were observed in the commercial sheep meat, which reflected the poorer quality diets of these sheep compared to those from the three farms, which consistently showed higher levels of 11t-18:1, 9c11t-18:2 and 11t13c-18:2. In the second study, sheep were provided with supplements during the spring and summer grazing season, which contributed to higher levels of 11t-18:1 and 9c11t-18:2. The farm that provided a small amount of supplements during the spring had the better lipid profile at both time periods. The polyunsaturated fatty acid (PUFA) content was higher in the meat from Sarda sheep from the three farms than in the meat from those sheep obtained from commercial slaughter operations. The plasmalogenic lipid content ranged from 2 to 3% of total lipids, the alk-1-enyl ethers consisted mainly of saturated and monounsaturated moieties, and the trans-18:1 profile was similar to that of the FA. The n-6 (6-8%) and n-3 PUFA (2-3%) contents, the n-6/n-3 ratio (3:1), as well as the saturated fatty acid (SFA) content (42-45%) and the SFA to PUFA ratio (4:1 to 5:1) of the Sarda sheep from the three farms were comparable to sheep meat lipids found in similar commercial operations in Europe. Inclusion of small amounts of supplements for the grazing Sarda sheep resulted in improved quality of sheep meat lipids

    Chemical Synthesis and Gas Chromatographic Behaviour of γ-Stearidonic (18:4n-6) Acid

    Get PDF
    γ-Stearidonic acid, 18:4n-6, a potential product of β-oxidation of arachidonic acid (20:4n-6), was only recently positively identified in a living organism—a thermophilic cyanobacterium Tolypothrix sp., albeit at low levels, whilst some indirect evidence suggests its wider presence, e.g. in a unicellular marine alga. We have prepared 18:4n-6 using an iodolactonisation chain-shortening approach from 22:5n-6 and obtained its 1H-, 13C-, COSY- and HSQC NMR spectra, with 18:5n-3 spectra also recorded for a comparison. The GC and GC-MS behaviour of its methyl ester was also studied. Like another Δ3 polyunsaturated acid, octadecapentaenoic (18:5n-3), 18:4n-6 rapidly yields 2-trans isomer upon formation of dimethyloxazoline derivative. On a polar ionic liquid phase (SLB-IL100, 200 °C) the methyl ester could be mistaken for 18:3n-3, while on methylsilicone phase (BP1, 210 °C) it eluted ahead of 18:3n-6 and 18:4n-3, suggesting that when present it may be easily misidentified during GC analysis of fatty acids

    Significance of coprophagy for the fatty acid profile in body tissues of rabbits fed different diets

    Full text link
    Four groups of eight New Zealand hybrid rab- bits were fattened with ad libitum access to the following pelleted experimental diets: ryegrass meal or alfalfa meal fed either alone or with oats meal in a ratio of 1:1. After 25 weeks they were slaughtered and dissected. Fatty acid (FA) profiles of caecotrophs (re-ingested fermentation products of the caecum), perirenal adipose tissue and intramuscular fat in the Musculus quadriceps were deter- mined. With high proportions of branched-chain FA (BFA) and trans FA, and increased proportions of saturated FA relative to the diets, the caecotroph FA profile showed a clear fingerprint of anaerobe microbial lipid metabolism including biohydrogenation. By contrast, the FA profiles of adipose and lean tissue comprised high proportions of polyunsaturated FA (PUFA), whilst BFA and trans FA occurred in much lower proportions compared to the ca- ecotrophs. Thus, coprophagy did not substantially modify the FA composition of the tissues investigated. Use of forage-only diets, compared to the oats supplemented diets, led to extraordinary high proportions of n-3 PUFA (including 18:3 and long-chain n-3) in the fat of adipose (21.3 vs. 6.7%) and lean tissue (15.4 vs. 5.7%). The forage type diet (grass vs. alfalfa) had smaller effects on the FA profiles. Indications of diet effects on endogenous desatu- ration, chain elongation and differential distribution offunctional FA between the two tissues investigated were found
    corecore