154 research outputs found

    Interactive Effects of Ocean Acidification and Warming on Growth, Fitness and Survival of the Cold-Water Coral Lophelia pertusa under Different Food Availabilities

    Get PDF
    Cold-water corals are important bioengineers that provide structural habitat for a diverse species community. About 70% of the presently known scleractinian cold-water corals are expected to be exposed to corrosive waters by the end of this century due to ocean acidification. At the same time, the corals will experience a steady warming of their environment. Studies on the sensitivity of cold-water corals to climate change mainly concentrated on single stressors in short-term incubation approaches, thus not accounting for possible long-term acclimatisation and the interactive effects of multiple stressors. Besides, preceding studies did not test for possible compensatory effects of a change in food availability. In this study a multifactorial long-term experiment (6 months) was conducted with end-of-the-century scenarios of elevated pCO2 and temperature levels in order to examine the acclimatisation potential of the cosmopolitan cold-water coral Lophelia pertusa to future climate change related threats. For the first time multiple ocean change impacts including the role of the nutritional status were tested on L. pertusa with regard to growth, ā€œfitness,ā€ and survival. Our results show that while L. pertusa is capable of calcifying under elevated CO2 and temperature, its condition (fitness) is more strongly influenced by food availability rather than changes in seawater chemistry. Whereas growth rates increased at elevated temperature (+4Ā°C), they decreased under elevated CO2 concentrations (~800 Ī¼atm). No difference in net growth was detected when corals were exposed to the combination of increased CO2 and temperature compared to ambient conditions. A 10-fold higher food supply stimulated growth under elevated temperature, which was not observed in the combined treatment. This indicates that increased food supply does not compensate for adverse effects of ocean acidification and underlines the importance of considering the nutritional status in studies investigating organism responses under environmental changes

    Air-sea fluxes of methanol, acetone, acetaldehyde, isoprene and DMS from a Norwegian fjord following a phytoplankton bloom in a mesocosm experiment

    Get PDF
    The ocean's influence on volatile organic compounds (VOCs) in the atmosphere is poorly understood. This work characterises the oceanic emission and/or uptake of methanol, acetone, acetaldehyde, isoprene and dimethyl sulphide (DMS) as a function of photosynthetically active radiation (PAR) and a suite of biological parameters. The measurements were taken following a phytoplankton bloom, in May/June 2005 with a proton transfer reaction mass spectrometer (PTR-MS), from mesocosm enclosures anchored in the Raunefjord, Southern Norway. The net flux of methanol was always into the ocean, and was stronger at night. Isoprene and acetaldehyde were emitted from the ocean, correlating with light (ravcorr, isoprene=0.49; ravcorr, acetaldehyde=0.70) and phytoplankton abundance. DMS was also emitted to the air but did not correlate significantly with light (ravcorr, dms=0.01). Under conditions of high biological activity and a PAR of ~450 Ī¼mol photons mā€‘2 sā€‘1, acetone was emitted from the ocean, otherwise it was uptaken. The inter-VOC correlations were highest between the day time emission fluxes of acetone and acetaldehyde (rav=0.96), acetaldehyde and isoprene (rav=0.88) and acetone and isoprene (rav=0.85). The mean fluxes for methanol, acetone, acetaldehyde, isoprene and DMS were ā€‘0.26 ng mā€‘2 sā€‘1, 0.21 ng mā€‘2 sā€‘1, 0.23 ng mā€‘2 sā€‘1, 0.12 ng mā€‘2 sā€‘1 and 0.3 ng mā€‘2 sā€‘1, respectively. This work shows that compound specific PAR and biological dependency should be used for estimating the influence of the global ocean on atmospheric VOC budgets

    Ocean acidification affects iron speciation during a coastal seawater mesocosm experiment

    Get PDF
    Rising atmospheric CO2 is acidifying the surface ocean, a process which is expected to greatly influence the chemistry and biology of the future ocean. Following the development of iron-replete phytoplankton blooms in a coastal mesocosm experiment at 350, 700, and 1050 Ī¼atm pCO2, we observed significant increases in dissolved iron concentrations, Fe(II) concentrations, and Fe(II) half-life times during and after the peak of blooms in response to CO2 enrichment and concomitant lowering of pH, suggesting increased iron bioavailability. If applicable to the open ocean this may provide a negative feedback mechanism to the rising atmospheric CO2 by stimulating marine primary production

    Coldā€water coral ecosystems under future ocean change: Live coral performance vs. framework dissolution and bioerosion

    Get PDF
    Physiological sensitivity of cold-water corals to ocean change is far less understood than of tropical corals and very little is known about the impacts of ocean acidification and warming on degradative processes of dead coral framework. In a 13-month laboratory experiment, we examined the interactive effects of gradually increasing temperature and pCO2 levels on survival, growth, and respiration of two prominent color morphotypes (colormorphs) of the framework-forming cold-water coral Lophelia pertusa, as well as bioerosion and dissolution of dead framework. Calcification rates tended to increase with warming, showing temperature optima at ~ā€‰14Ā°C (white colormorph) and 10ā€“12Ā°C (orange colormorph) and decreased with increasing pCO2. Net dissolution occurred at aragonite undersaturation (Ī©Arā€‰<ā€‰1) at ~ā€‰1000ā€‰Ī¼atm pCO2. Under combined warming and acidification, the negative effects of acidification on growth were initially mitigated, but at ~ā€‰1600 Ī¼atm dissolution prevailed. Respiration rates increased with warming, more strongly in orange corals, while acidification slightly suppressed respiration. Calcification and respiration rates as well as polyp mortality were consistently higher in orange corals. Mortality increased considerably at 14ā€“15Ā°C in both colormorphs. Bioerosion/dissolution of dead framework was not affected by warming alone but was significantly enhanced by acidification. While live corals may cope with intermediate levels of elevated pCO2 and temperature, long-term impacts beyond levels projected for the end of this century will likely lead to skeletal dissolution and increased mortality. Our findings further suggest that acidification causes accelerated degradation of dead framework even at aragonite saturated conditions, which will eventually compromise the structural integrity of cold-water coral reefs

    Nitrogen loss processes in response to upwelling in a Peruvian coastal setting dominated by denitrification ā€“ a mesocosm approach

    Get PDF
    Upwelling of nutrient-rich deep waters make eastern boundary upwelling systems (EBUSs), such as the Humboldt Current system, hot spots of marine productivity. Associated settling of organic matter to depth and consecutive aerobic decomposition results in large subsurface water volumes being oxygen depleted. Under these circumstances, organic matter remineralisation can continue via denitrification, which represents a major loss pathway for bioavailable nitrogen. Additionally, anaerobic ammonium oxidation can remove significant amounts of nitrogen in these areas. Here we assess the interplay of suboxic water upwelling and nitrogen cycling in a manipulative offshore mesocosm experiment. Measured denitrification rates in incubations with water from the oxygen-depleted bottom layer of the mesocosms (via 15N label incubations) mostly ranged between 5.5 and 20ā€‰nmolā€‰N2ā€‰Lāˆ’1ā€‰hāˆ’1 (interquartile range), reaching up to 80ā€‰nmolā€‰N2ā€‰Lāˆ’1ā€‰hāˆ’1. However, actual in situ rates in the mesocosms, estimated via Michaelisā€“Menten kinetic scaling, did most likely not exceed 0.2ā€“4.2ā€‰nmolā€‰N2ā€‰Lāˆ’1ā€‰hāˆ’1 (interquartile range) due to substrate limitation. In the surrounding Pacific, measured denitrification rates were similar, although indications of substrate limitation were detected only once. In contrast, anammox (anaerobic ammonium oxidation) made only a minor contribution to the overall nitrogen loss when encountered in both the mesocosms and the Pacific Ocean. This was potentially related to organic matter Cā€‰/ā€‰N stoichiometry and/or process-specific oxygen and hydrogen sulfide sensitivities. Over the first 38ā€‰d of the experiment, total nitrogen loss calculated from in situ rates of denitrification and anammox was comparable to estimates from a full nitrogen budget in the mesocosms and ranged between āˆ¼ā€‰1 and 5.5ā€‰Āµmolā€‰Nā€‰Lāˆ’1. This represents up to āˆ¼ā€…ā€‰20ā€‰% of the initially bioavailable inorganic and organic nitrogen standing stocks. Interestingly, this loss is comparable to the total amount of particulate organic nitrogen that was exported into the sediment traps at the bottom of the mesocosms at about 20ā€‰m depth. Altogether, this suggests that a significant portion, if not the majority of nitrogen that could be exported to depth, is already lost, i.e. converted to N2 in a relatively shallow layer of the surface ocean, provided that there are oxygen-deficient conditions like those during coastal upwelling in our study. Published data for primary productivity and nitrogen loss in all EBUSs reinforce such conclusion

    Responses of marine benthic microalgae to elevated CO<inf>2</inf>

    Get PDF
    Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems. Ā© 2011 Springer-Verlag

    Mechanistic origins of variability in phytoplankton dynamics. Part II: analysis of mesocosm blooms under climate change scenarios

    Get PDF
    Driving factors of phytoplankton spring blooms have been discussed since long, but rarely analyzed quantitatively. Here, we use a mechanistic size-based ecosystem model to reconstruct observations made during the Kiel mesocosm experiments (2005ā€“2006). The model accurately hindcasts highly variable bloom developments including community shifts in cell size. Under low light, phytoplankton dynamics was mostly controlled by selective mesozooplankton grazing. Selective grazing also explains initial dominance of large diatoms under high light conditions. All blooms were mainly terminated by aggregation and sedimentation. Allometries in nutrient uptake capabilities led to a delayed, post-bloom dominance of small species. In general, biomass and trait dynamics revealed many mutual dependencies, while growth factors decoupled from the respective selective forces. A size shift induced by one factor often changed the growth dependency on other factors. Within climate change scenarios, these indirect effects produced large sensitivities of ecosystem fluxes to the size distribution of winter phytoplankton. These sensitivities exceeded those found for changes in vertical mixing, whereas temperature changes only had minimal impacts

    Rapid decline of the CO2 buffering capacity in the North Sea and implications for the North Atlantic Ocean

    Get PDF
    Author Posting. Ā© American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB4001, doi:10.1029/2006GB002825.New observations from the North Sea, a NW European shelf sea, show that between 2001 and 2005 the CO2 partial pressure (pCO2) in surface waters rose by 22 Ī¼atm, thus faster than atmospheric pCO2, which in the same period rose approximately 11 Ī¼atm. The surprisingly rapid decline in air-sea partial pressure difference (Ī”pCO2) is primarily a response to an elevated water column inventory of dissolved inorganic carbon (DIC), which, in turn, reflects mostly anthropogenic CO2 input rather than natural interannual variability. The resulting decline in the buffering capacity of the inorganic carbonate system (increasing Revelle factor) sets up a theoretically predicted feedback loop whereby the invasion of anthropogenic CO2 reduces the ocean's ability to uptake additional CO2. Model simulations for the North Atlantic Ocean and thermodynamic principles reveal that this feedback should be stronger, at present, in colder midlatitude and subpolar waters because of the lower present-day buffer capacity and elevated DIC levels driven either by northward advected surface water and/or excess local air-sea CO2 uptake. This buffer capacity feedback mechanism helps to explain at least part of the observed trend of decreasing air-sea Ī”pCO2 over time as reported in several other recent North Atlantic studies.S. Doney and I. Lima were supported by NSF/ONR NOPP (N000140210370) and NASA (NNG05GG30G)

    Spectrophotometric Calibration of pH Electrodes in Seawater Using Purified m-Cresol Purple

    Get PDF
    This work examines the use of purified meta-cresol purple (mCP) for direct spectrophotometric calibration of glass pH electrodes in seawater. The procedures used in this investigation allow for simple, inexpensive electrode calibrations over salinities of 20ā€“40 and temperatures of 278.15ā€“308.15 K without preparation of synthetic Tris seawater buffers. The optimal pH range is āˆ¼7.0ā€“8.1. Spectrophotometric calibrations enable straightforward, quantitative distinctions between Nernstian and non-Nernstian electrode behavior. For the electrodes examined in this study, both types of behavior were observed. Furthermore, calibrations performed in natural seawater allow direct determination of the influence of salinity on electrode performance. The procedures developed in this study account for salinity-induced variations in liquid junction potentials that, if not taken into account, would create pH inconsistencies of 0.028 over a 10-unit change in salinity. Spectrophotometric calibration can also be used to expeditiously determine the intercept potential (i.e., the potential corresponding to pH 0) of an electrode that has reliably demonstrated Nernstian behavior. Titrations to ascertain Nernstian behavior and salinity effects can be undertaken relatively infrequently (āˆ¼weekly to monthly). One-point determinations of intercept potential should be undertaken frequently (āˆ¼daily) to monitor for stable electrode behavior and ensure accurate potentiometric pH determinations

    Tracking seasonal changes in North Sea zooplankton trophic dynamics using stable isotopes

    Get PDF
    Trophodynamics of meso-zooplankton in the North Sea (NS) were assessed at a site in the southern NS, and at a shallow and a deep site in the central NS. Offshore and neritic species from different ecological niches, including Calanus spp., Temora spp. and Sagitta spp., were collected during seven cruises over 14 months from 2007 to 2008. Bulk stable isotope (SI) analysis, phospholipid-derived fatty acid (PLFA) compositions, and Ī“ 13CPLFA data of meso-zooplankton and particulate organic matter (POM) were used to describe changes in zooplankton relative trophic positions (RTPs) and trophodynamics. The aim of the study was to test the hypothesis that the RTPs of zooplankton in the North Sea vary spatially and seasonally, in response to hydrographic variability, with the microbial food web playing an important role at times. Zooplankton RTPs tended to be higher during winter and lower during the phytoplankton bloom in spring. RTPs were highest for predators such as Sagitta sp. and Calanus helgolandicus and lowest for small copepods such as Pseudocalanus elongatus and zoea larvae (Brachyura). Ī“ 15NPOM-based RTPs were only moderate surrogates for animalsā€™ ecological niches, because of the plasticity in source materials from the herbivorous and the microbial loop food web. Common (16:0) and essential (eicosapentaenoic acid, EPA and docosahexaenoic acid, DHA) structural lipids showed relatively constant abundances. This could be explained by incorporation of PLFAs with Ī“ 13C signatures which followed seasonal changes in bulk Ī“ 13CPOM and PLFA Ī“ 13CPOM signatures. This study highlighted the complementarity of three biogeochemical approaches for trophodynamic studies and substantiated conceptual views of size-based food web analysis, in which small individuals of large species may be functionally equivalent to large individuals of small species. Seasonal and spatial variability was also important in altering the relative importance of the herbivorous and microbial food webs
    • ā€¦
    corecore