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Abstract. Upwelling of nutrient-rich deep waters make east-
ern boundary upwelling systems (EBUSs), such as the Hum-
boldt Current system, hot spots of marine productivity. As-
sociated settling of organic matter to depth and consecutive
aerobic decomposition results in large subsurface water vol-
umes being oxygen depleted. Under these circumstances, or-
ganic matter remineralisation can continue via denitrifica-
tion, which represents a major loss pathway for bioavail-
able nitrogen. Additionally, anaerobic ammonium oxidation
can remove significant amounts of nitrogen in these areas.
Here we assess the interplay of suboxic water upwelling and
nitrogen cycling in a manipulative offshore mesocosm ex-
periment. Measured denitrification rates in incubations with
water from the oxygen-depleted bottom layer of the meso-
cosms (via PN label incubations) mostly ranged between
5.5 and 20nmol N, L='h~! (interquartile range), reaching
up to 80 nmol Np L~!h~!. However, actual in situ rates in the
mesocosms, estimated via Michaelis—Menten kinetic scal-

ing, did most likely not exceed 0.2—4.2 nmol Ny L~ h~! (in-
terquartile range) due to substrate limitation. In the surround-
ing Pacific, measured denitrification rates were similar, al-
though indications of substrate limitation were detected only
once. In contrast, anammox (anaerobic ammonium oxida-
tion) made only a minor contribution to the overall nitrogen
loss when encountered in both the mesocosms and the Pacific
Ocean. This was potentially related to organic matter C /N
stoichiometry and/or process-specific oxygen and hydrogen
sulfide sensitivities. Over the first 38 d of the experiment, to-
tal nitrogen loss calculated from in situ rates of denitrification
and anammox was comparable to estimates from a full nitro-
gen budget in the mesocosms and ranged between ~ 1 and
5.5 umol NL~!. This represents up to ~ 20 % of the initially
bioavailable inorganic and organic nitrogen standing stocks.
Interestingly, this loss is comparable to the total amount of
particulate organic nitrogen that was exported into the sed-
iment traps at the bottom of the mesocosms at about 20 m
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depth. Altogether, this suggests that a significant portion, if
not the majority of nitrogen that could be exported to depth,
is already lost, i.e. converted to Ny in a relatively shallow
layer of the surface ocean, provided that there are oxygen-
deficient conditions like those during coastal upwelling in
our study. Published data for primary productivity and ni-
trogen loss in all EBUSs reinforce such conclusion.

1 Introduction

Amongst the most productive marine ecosystems are east-
ern boundary upwelling systems (EBUSs), which are mainly
fuelled by the wind-driven upwelling of dissolved inorganic
nutrient-rich deep waters to the surface ocean, stimulat-
ing primary and associated higher trophic level productiv-
ity (Chavez and Messié, 2009; Kdmpf and Chapman, 2016;
FAO, 2018). This is particularly true for the Humboldt Cur-
rent system off Peru (Montecino and Lange, 2009). High pro-
ductivity and the eventual export of organic matter to depth
result in marked oxygen consumption by aerobic respiration,
leading to so-called subsurface oxygen-depleted zones and
virtually anoxic oxygen minimum zones (ODZs and OMZs,
respectively) at depth (e.g. Cline and Richards, 1972; Paul-
mier and Ruiz-Pino, 2009). In the absence of oxygen, het-
erotrophic organic matter decomposition can continue with
alternative electron acceptors, such as nitrate (NO3') or ni-
trite (NO, ') via nitric oxide (NO) and nitrous oxide (N2O) to
molecular nitrogen (N7), in a series of separate steps carried
out by a variety of bacteria (Zumft, 1997). In their entirety,
these processes are summarised as denitrification. A by-
product of denitrification is ammonium (NHI) from reminer-
alised organic matter, but overall denitrification constitutes a
net loss of bioavailable nitrogen (Paulmier et al., 2009). A
second prevalent nitrogen loss pathway in ODZs and OMZs
is autotrophic anaerobic ammonium oxidation (anammox)
which utilises NHI and NO; produced by heterotrophic pro-
cesses to produce energy for carbon dioxide (CO;) fixation
and organic matter production (Thamdrup et al., 2006; Bran-
des et al., 2007).

Observational and modelling studies have estimated the
loss of bioavailable nitrogen via water column denitrification
and anammox in suboxic ODZs and anoxic OMZs to amount
to about 20 %—35 % of the total nitrogen losses ocean-wide
(for reviews, see Bianchi et al., 2012; Zhang et al., 2020).
In a context of climate/ocean change, which has been pro-
jected to enhance the temperature gradient between land and
ocean and, hence, alongshore winds (Di Lorenzo, 2015), up-
welling intensity, and the frequency of deep waters would
subsequently increase (Hauri et al., 2013; Wang et al., 2015).
Such a scenario has been put forward for the Humboldt
Current system off Peru but also other EBUSs (Bakun and
Weeks, 2008; Varela et al., 2015). Furthermore, due to in-
creasing temperatures, the ocean loses oxygen (O;), and
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OMZs are expanding (e.g. Bopp et al., 2002; Bograd et al.,
2008; Stramma et al., 2008; Oschlies et al., 2017). Together
with changes in microbial activity, this modifies the biogeo-
chemical properties of upwelled waters, including, next to
O;, carbonate chemistry speciation, i.e. ongoing ocean acid-
ification further decreases already low deep water pH levels
(e.g. Feely et al., 2008; Franco et al., 2018; Schulz et al.,
2019). Changes in the upwelling frequency and/or inten-
sity, oxygen availability, temperature, and pH could influence
planktonic food web functioning in EBUSs, with repercus-
sions for nitrogen loss processes.

To better understand the events following the coastal up-
welling of oxygen- and nitrogen-depleted deep waters, we
make use of an offshore mesocosm set-up. This approach al-
lows the simulating of upwelling and the tracing of biogeo-
chemical element cycling, as well as associated trophic inter-
actions. We were specifically aiming to address the question
of nitrogen cycling, i.e. the build-up and turnover of organic
nitrogen pools, their export from the surface to depth, and,
most importantly, potential loss processes. Because such an
approach enables budgeting of the various pools, it will be an
alternative and independent assessment of the nitrogen bal-
ance in coastal ODZs next to classical shipboard transects.

2 Methods

The current experiment started on 22 February 2017 with
the deployment of eight Kiel Off-Shore Mesocosms for Fu-
ture Ocean Simulations (KOSMOS) about 4 nautical miles
(nm) off the Peruvian coast, close to San Lorenzo Island at
12.0555° S and 77.2348° W, and ended on 16 April 2017 af-
ter 50 d of sampling. Full details on the experimental set-up,
the sampling, manipulation, and maintenance schedule can
be found in Bach et al. (2020a).

2.1 Mesocosm set-up and sampling

The KOSMOS system comprised eight mesocosms con-
sisting of polyurethane bags 2m in diameter extending to
~ 18.7 m depth, with the last 2 m being a funnel-shaped sed-
iment trap. After 2d of thorough flushing and soaking of
the bags, which had been pulled under the surface and were
open to water exchange through a 3 mm mesh on both ends,
the bags were secured above the water line, and the sedi-
ment traps were attached, enclosing about 54 m? of a natural
plankton assemblage. Sampling commenced on 26 February,
i.e. day 1. Sampling days typically started in the morning be-
tween 06:30-07:00 PET (Peru time) by removing the mate-
rial that had accumulated in the sediment traps with a pump,
followed by CTD (conductivity, temperature, and depth)
casts. The CTD (Sea & Sun Technology 90M memory probe)
was additionally equipped with an optical oxygen sensor and
a calibrated AMT (Analysenmesstechnik GmbH, Germany)
amperometric hydrogen sulfide (H,S) sensor (for details on
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the operation, the other sensors, and calibrations/corrections,
see Schulz and Riebesell, 2013). CTD casts were followed
by sampling with an integrating water sampler (IWS; Hydro-
Bios). Because strong thermal stratification resulted in two
distinct water masses at the surface (high oxygen and pH)
and at the bottom (low oxygen and pH) of the mesocosms
(Fig. 2a, b and ¢), two separate depth-integrated water sam-
ples were taken. According to changes in stratification, the
depths were adjusted over time (days 1-2 — 0-5 and 5-17 m,
surface and bottom, respectively; days 3-28 — 0-10 and 10—
17 m, surface and bottom, respectively; days 30-50 — 0-12.5
and 12.5-17 m, surface and bottom, respectively).

Furthermore, to stabilise and maintain bottom water char-
acteristics (as in the surrounding Pacific), a NaCl brine solu-
tion was homogeneously injected below 10 m on day 13 and
below 12.5 m on day 33, increasing salinity, and, hence, strat-
ification, by about 0.7 and 0.5 psu (practical salinity unit),
respectively (see Bach et al., 2020a, for details).

While all seawater bulk parameters, such as particulate
and dissolved organic matter or dissolved inorganic nutrients,
were measured on the two depth-integrated samples (see
Sect. 2.5 below for details), samples for N loss process in-
cubations (see Sect. 2.3 below for details) were taken with a
Niskin sampler from 15.25 m depth and treated as gas sensi-
tive, i.e. filled into two 100 mL glass-stoppered DURAN bot-
tles with at least one bottle volume of overflow, closed with-
out headspace, and kept cold and in the dark (~ 2—4 h) until
processing. A direct comparison of oxygen concentrations
in these samples by means of Winkler titrations, following
the recommendations of Carritt and Carpenter (1966); Bryan
et al. (1976), and Grasshoff et al. (1983) with CTD-oxygen—
optode measurements, revealed an offset by +13 umol L™!
in the CTD data, although response time hysteresis had been
corrected for T = 1s, as described in Fiedler et al. (2013).
Hence, oxygen concentrations at depth, as shown here from
CTD casts, are likely to have been significantly lower. The
most likely explanation for this offset is that the response
time of the sensor was actually slower, i.e. of the order of
2-2.5s.

2.2 Deep water collection and addition

To simulate upwelling with two distinct OMZ signatures,
in terms of N deficit, deep water was collected from 90 m
at 12.044333° S, 77.377583° W, and 30 m at 12.028323° S,
77.223603° W, on days 5 and 10, respectively. However, both
waters had quite a strong N deficit (N*) in comparison to
a typical N /P of 16/1 required for phytoplankton growth
(Redfield et al., 1963; Brzezinski, 1985), and will be referred
to as “low N /P” and “very low N / P” treatments in the fol-
lowing (compare Table 1). The deep waters were collected
into 100 m> bags, without headspace, at the respective depths
and sealed once brought back to the surface. Deep water was
added by first removing about 20 m> from each mesocosm
and replacing it with the respective deep water that was in-
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Figure 1. Schematic reaction diagram of major marine nitrogen cy-
cling processes, with (1) hydroxylamine oxidation, (2) nitrifier den-
itrification, (3) denitrification, (4) anammox, (5) nitrification, (6) ni-
trate ammonification (DNRA), (7) anaerobic nitrite oxidation, and
(8) nitrogen fixation. While processes 1-4 are considered nitrogen
loss processes, 5—7 constitute neither a loss nor a gain, with (8) be-
ing the latter. Blue denotes oxic and red suboxic and/or anoxic pro-
cesses. Please note that, while the reactions have been chemically
balanced for electro-neutrality, the exact amount of HT, ¢~ or wa-
ter produced and/or consumed will depend on the actual organism
or enzyme and reaction pathway. See Bourbonnais et al. (2017),
Codispoti et al. (2005), and Zumft (1997), and references therein,
for details.

jected into the bottom layer, between 14 and 17 m, onday 11,
and the surface layer, between 1 and 9 m, on day 12. To min-
imise changes to deep water gas concentrations during injec-
tion, water was pumped from 2 m depth out of the deep water
bags. For further details on collection and addition, see Bach
et al. (2020a).

2.3 N loss processes incubations, measurements, and
calculations

The two main N loss processes in oxygen-deficient wa-
ters off the Peruvian coast, i.e. denitrification and anam-
mox (Fig. 1), were assayed with incubations of water from
15.25m depth, using labelled "NH4Cl (> 98 atom %) or
Nal’NO, (98 atom %), i.e. by an addition of 3 umol L~
each. During incubations with the former, anammox will
be traced by the production of N, (]5N14N) and 3N,
(NN) if coupled to nitrification (although unlikely as it
is an oxic process; compare Fig. 1). During incubations with
15N 05, anammox would again produce 29N2, while denitri-
fication would produce both 2N, and 3N, (Fig. 1). Here, a
further complication for rate calculations would be coupled
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Table 1. Concentrations of nitrate, nitrite, ammonium, dissolved organic nitrogen (DON), and dissolved organic phosphorus (DOP), and
silicate (micromoles per litre, hereafter pmolL_l) in the two deep water batches and associated inorganic N /P /Si in comparison to a
Redfield ratio of 16/1/16 (see the text for details), and the inorganic N deficit calculated as N* = DIN — 16 x POif, with DIN denoting the
sum of NO; NO, and NHJ.

NO; NO, NHf DON Poff DOP Si(OH)s N/P/Si N*
Low N/PDW 1.1 2.9 0.3 55 25 02 196 1.7/1/7.8 =357
Very low N /P DW 0 0 0.3 5.2 26 02 174 0.1/1/6.7 —413
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Figure 2. Temporal development of upwelling and stratification in the surrounding Pacific waters at the mooring site (water depth between
25 and 30m), as evidenced by changes in CTD-derived (a) temperature (degrees Celsius), (b) salinity (practical salinity unit — psu), (c)
oxygen saturation (percent) and (d) pHr (total scale) depth profiles. Note that dips in salinity at the surface correspond with El-Nifio-related
torrential rain events further inland and a increased discharge of freshwater by the nearby river Rimac.

nitrate ammonification, i.e. dissimilatory nitrate or nitrite re- set-up will replace about 20 times the volume of each ex-
duction to ammonium (DNRA), also leading to 3°N, pro- etainer (unpublished data). This is lower than the 24 times
duction via anammox (compare Fig. 1 and Holtappels et al., reported to ensure that the reduction in O, concentration is
2011). Incubations were in 12mL glass double wadded ex- by less than 20 % compared to in situ conditions (Holtappels
etainers (Labco Ltd.) in duplicates for each of the four time et al., 2011). A similar reduction would also be observed for

points, i.e. 0, ~ 2, ~7 and ~ 20 h after label addition (in or- most other gases (Wanninkhof, 1992), except those buffered
der to avoid potential bottle effects), in the dark, and inverted by conjugate acid—base pairs, such as H,S or CO», for which

at a fairly constant 17£0.2 °C, close to respective in situ con- the reduction would have been even less. Incubations were
ditions (similar to the protocols described in Dalsgaard et al. stopped at each time point by the injection of 50 uL of a
(2003), Ward et al. (2009), and Bourbonnais et al. (2021)). ZnCl; solution (50 % w/v), followed by thorough mixing.

All sample handling, such as filling of the exetainers with Exetainer vials were stored upside down at room temper-
8mL of labelled sample water using an Eppendorf Multi- ature in the dark. Prior to analysis, the headspace and wa-
pette E3, was carried out in a glove box that had been evac- ter were equilibrated at room temperature by placing the
uated three times with a vacuum pump, followed by flush- exetainers on a platform mixer at 100 rpm (revolutions per
ing with N 4.5 gas (this was also done to the open exetain- minute) overnight. For measurements, 100 uL of headspace
ers). To reduce large background 28N, levels and facilitate from each exetainer was injected, using an autosampler (Car-

the detection of the small isotopic signal of labelled N be- valho and Murray, 2018), into a PLOT (porous layer open

ing produced during incubations, the exetainers were capped tubular) gas chromatography (GC) column, at 2mL min~!,

and sparged with Helium 5.0 at 3 psi for 6 min on a mani- housed in a TRACE GC oven and interfaced with a Thermo
fold that could hold all 16 exetainers of a single mesocosm. Scientific DELTA V Plus mass spectrometer via a GC Com-
Based on previous calculations and measurements, such a bustion III unit, followed by a liquid nitrogen trap. The latter
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minimises interference by CO (a constituent in air) and NO
(a secondary product during ionisation of water and/or oxy-
gen, followed by the production of reactive oxygen species
and recombination with nitrogen) due to imperfect GC col-
umn peak separation. The mass spectrometer was calibrated
for Nj concentrations by injections of known amounts of air.

Rate calculations were straightforward, as in most 15 NH}'
incubations no enrichment over time in 22N, was detected,
indicating the absence of anammox. Hence, denitrification in
the 15N02_ incubations (and because 3N, was quite noisy)
was calculated from the increase in 22N; and the known ratio
of labelled to unlabelled NO, (in the rare cases where anam-
mox was detected in the 15NHZ{ incubations, denitrification
was corrected for by subtraction). Rates were calculated from
the linear regression slopes (see Fig. S1 in the Supplement)
of the increase in the overall amount of N removed (as mea-
sured by areas 28A and A and associated 815N), which
was determined by the following conversions (modified from
Thamdrup et al., 2006; Holtappels et al., 2011):

Nremovals1—3 (MmOI No L™ 1 )

284 4 29 v
_|:(15r( At A)CfMSVZ>
-3

fNZairCflsN
28 29 %
(15, CA+TTA) cfus 3\ ] 1000 o
fNZaircflsN ‘/1 7
t0
with
15
R
15,
"SR @
and
SN
15 15
R=—"Ry:+1, 3
1000 a1r+ ( )

where 1R and R, denote the ratios of 15N/ 14N in a
sample gas or air, respectively (the latter was determined
from measured 28N, and 2N, by Junk and Svec, 1958, i.e.
0.00367647, and recommended by Coplen et al., 2002). §'°N
is the resulting isotopic composition (%o), V4, Vi, and V, are
the volumes of headspace, sample incubated, and analysed
(millilitres), respectively. c fis is the determined calibration
factor for each measurement run to convert mass spectrome-
ter peak area (33A+2°A) into abundance (umol), fN, ;. is the
fraction of N; found in equilibrium in the 4 mL of headspace
(V) in relation to the total amount, including the 8 mL of
sample water (V;), in an Exetainer, and ¢ 1-3 or #0 refer to the
respective incubation sampling times. The conversion factor
N2, Was calculated from N solubility (Hamme and Emer-
son, 2004) for a lab temperature of 21 °C and a salinity of 35.
To extrapolate from measured removal of N to total N a
conversion factor, ¢ fisyy was calculated, taking into account
the availability of labelled and overall substrate(s) together
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with the likelihood of 2°N, production, i.e. 2Fn(1 — Fy),
for denitrification incubations (binomial), and Fy, for anam-
mox, with Fy denoting the ratio of labelled to total [NO, ] or
[NHI], respectively.

It is noted that there have been studies which found dis-
crepancies between denitrification calculated using 2°N; as
above, and 3ON2, due to non-binomial distributions (De Bra-
bandere et al., 2014; Chang et al., 2014). This has been
attributed to so-called intracellular NO; /NO, shunting,
which leads to an error in the calculations of labelled to un-
labelled substrate, based on known additions and measured
seawater concentrations. With respect to noisy °N, data, we
cannot check if that was an issue here; yet, it would lead to an
underestimation of denitrification rates in both cases. Given
the good agreement between our rate measurements and a
full nitrogen budget (see Sect. 3.2 for details), it, however,
appears that potential NO3' / NO; shunting did not affect our
rate measurements significantly.

2.4 In situ substrate limitation of denitrification, total
N loss calculations, and orni-eutrophication

In more than half of the denitrification incubations, measured
N loss over a period of about 20 h was higher than the com-
bined concentrations of in situ NO; and NOj, . This indicates
that the 3 umol L~! addition of Na:is NO; alleviated substrate
limitation, and rates in the incubations were higher than the-
oretically sustainable at in situ conditions. Furthermore, ac-
knowledging that rate measurements at different substrate
concentrations in comparison to in situ conditions are always
potential rates, we estimated in situ rates from a Michaelis—
Menten kinetic by first calculating the maximum rate, Viax,
as follows:

. Ratemeas. ([S]in situ 1 [15N02_] + KI/Z)
- [STin sita + [1SNO; |

; “)

which was followed by the realised rates at in situ substrate
concentrations:

[S]in situ Vmax
[STin situ + K12

with [STin sice referring to in situ substrate concentrations of
NO; and NOj, [ISNOZ_ ] referring to the 3 umol L™! label
addition, and K/, referring to the reaction half-saturation
constant. As we have not performed any substrate vs. rate
essays ourselves, and since there is only little information
on the kinetics of water column denitrification, we adopted
a conservative approach and chose the highest published
K1 of 5 pmolL’1 (Michiels et al., 2019), over the 2.9 and
2.5umol L~! of Jensen et al. (2009) and Dalsgaard et al.
(2013), respectively.

Total N loss by denitrification and anammox was calcu-
lated only for the first 38 d of the experiment. The reason
was to keep the estimates by rate measurements compara-
ble to estimates from a full N budget of the mesocosms,

(&)

Rateiy sin =
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as, after day 40, massive perturbations in the latter became
obvious. This was caused by birds aggregating on the roofs
of the mesocosms and depositing nitrogen-rich faeces (orni-
eutrophication). The onset of this perturbation was estimated
by the sudden increase in total particulate phosphorus depo-
sition rates in the sediment traps, most likely from excrement,
as phosphate concentrations during this time were relatively
constant (Fig. S2; for details see Bach et al., 2020a). Total
N loss was then estimated by summing up hourly in situ rate
estimates (Eq. 5) for each mesocosm (in case anammox was
also detected, the measured rate was added to that of den-
itrification), factoring in the varying measurement intervals
and, thus, filling in days without measurements. This hourly
N> loss was then multiplied by 24 h d!~ x 2 (conversion be-
tween Ny to N) and divided by three (average contribution of
bottom layer water to overall mesocosm volume), converting
it to total N loss over the first 38 d of the experiment.

2.5 Ancillary measurement parameters

Dissolved inorganic nutrient concentrations in seawater, i.e.
NO3_ , N02_ , and NH;‘|r (together referred to as DIN) and
PO?[ and Si(OH)s were measured colourimetrically on a
segmented flow analyser (QuAAtro, SEAL Analytical) on
site (for details, see Bach et al., 2020a).

Dissolved organic nitrogen (DON) was calculated from a
mass balance by subtracting measured DIN from total dis-
solved nitrogen (TDN) concentrations. The latter was also
determined by segmented flow analysis after an oxidising
step with Oxisolv (Merck) for 30 min in an autoclave.

Particulate organic nitrogen and carbon (PON and POC,
respectively) concentrations in the water column were deter-
mined by filtering known amounts of seawater over precom-
busted glass fibre filters (GF/Fs) that were stored frozen until
analysis on an elemental analyser (EA; EuroVector EA 3000;
for details, see Bach et al., 2020a).

The removal of nitrogen from the water column via sedi-
mentation (Ngeq) was determined on material collected every
other day from the sediment traps which was quantitatively
precipitated, freeze-dried, weighed, and then an aliquot was
measured on an elemental analyser (EuroVector EA 3000; for
details, see Bach et al., 2020a and Boxhammer et al., 2016
again).

2.6 Statistical analyses

In order to assess what drives denitrification rates, step-
wise multiple linear regressions (MLRs) with interaction
terms were carried out. Prior to the regressions, outliers
in estimated in situ denitrification rates (see Sect. 2.4 and
Table 2 for details) were identified in a box-and-whisker
plot and removed, i.e. five values with rates higher than
10nmol L=' h™!. In order to avoid overfitting and find a bal-
ance between model complexity and explanatory power, we
followed a backward elimination process, starting with the

Biogeosciences, 18, 4305-4320, 2021

K. G. Schulz et al.: Nitrogen loss processes in response to upwelling in a Peruvian coastal setting

full seven potential measured predictors, i.e. PON, PONq,
DON, NO3, NO, , Oy, and H;S, all measured in the bottom
layer of the mesocosms (with the exception of sedimenting
PONieq). Note that we have opted to not include POC, which
is highly co-correlated with PON, and DOC, which was not
measured in the bottom layer (but probably would have a
similar issue). In a next step, MLRs with all possible com-
binations of six potential predictors out of the overall seven
and their resulting R> were calculated, which was followed
by further MLRs, subsequently reducing the number of pre-
dictors each time by one (a total of 119 MLRs were fitted).
Calculations were performed using the functions “boxplot”,
“stepwisefit”, and “plotEffects” in MATLAB.

3 Results

The experiment took place during the 2017 coastal El Nifio,
which was characterised by three significant surface ocean
warming events throughout January to April (Garreaud,
2018), with the last two, at the end of February and mid-
March, clearly evident by the water surface temperatures
above 22°C at our mooring site (Fig. 2a). The El Nifio
was accompanied by torrential rains further inland, which
was reflected by periods of significant reductions in surface
ocean salinity (Fig. 2b), coinciding with water discharge of
more than twice the typical rates of the nearby river Ri-
mac (Fig. S3). During our experiments, there were, however,
also periods of deep water upwelling, as evidenced by colder
surface ocean temperatures, and reduced oxygen saturation
states and pH levels reaching down to ~ 30 % and 7.5 (total
scale), respectively (Fig. 2c, d).

3.1 Temporal changes in oxygen, inorganic nitrogen,
and organic nitrogen, as well as hydrogen sulfide,
in the bottom layer of the mesocosms

Thermal stratification of the Pacific Ocean and the meso-
cosm waters during the initial phase of the experiment meant
strict separation of well-oxygenated surface (~ 0—10 m) from
oxygen-depleted bottom waters (Fig. 2c). And while in the
surrounding Pacific bottom waters oxygen remained depleted
throughout, corresponding oxygen levels in the mesocosms
started to increase (Figs. 2 and 3e). This was caused by the
cooling of the surface waters due to upwelling in the sur-
rounding Pacific and the resultant mixing of surface and
bottom waters in the mesocosms. Such artificial behaviour
was mitigated by increasing bottom layer salinity and, there-
fore, stratification on days 13 and 33, which brought oxygen
concentrations at depth down to typical Pacific levels again
(Fig. 3e).

All mesocosms started with significant amounts of dis-
solved inorganic nitrogen present as NO; and NO, , which,
however, were quickly depleted within the first 2 weeks
(Fig. 3c, d). The deep water addition significantly increased
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Table 2. Calculated in situ denitrification rates (nanomole dinotrogen per litre per hour; hereafter nmol Ny L=1h=1) in the low N /P and
very low N /P deep water addition mesocosms and the surrounding Pacific (see Sect. 2.4 for details), together with those for anaerobic
ammonium oxidation (anammox™®) (nmol N, L-! h_l), when encountered, at various days. N loss refers to the total amount of nitrogen
(micromole nitrogen per litre; hereafter pmol NL~1) being lost through these processes for the first 38 d, for which an N budget can be
calculated (compare Fig. 4). N loss was calculated for each mesocosm until day 38 by taking into account the varying measurement intervals
and assuming an average contribution of bottom water to the overall mesocosm volume of one-third. For details on calculations, see Sect. 2.
Note: SD — standard deviation. Note: anammox rates in the table below are shown in italics and with an asterisk to distinguish them from

denitrification rates.

Mesocosm In situ denitrification rates and/or anammox® N loss N budget
(nmolN, L~ h=1) (umoINL™!)  (umoINL™1)
Low N /P T8 T12 TI16 T22 T26 T30 T34 T38 T42 T46 T1-38 T1-38
M2 12.45 6.33 135 1.21 0.65 150 044 0.40 0.52 0.20 —2.39 —5.55
M3 4.29 9.52  7.90 6.62 206 057 0.74 579 1.67 0.21 —2.89 —3.38
M6 326 17.01 2.16 275 059 035 0.26 0.26 0.16 0.06 —-2.00 —4.46
M7 4.89 3.62 243 0.23 048 038 0.00 0.17 0.17 0.15 —1.10 —3.00
0.44*
Treatment mean + SD —2.10+0.76 —4.10%+1.15
Very low N /P T8 T12 T16 T22 T26 T30 T34 T38 T42 T46 T1-38 T1-38
M1 6.04 1446 7.77 1.67 050 155 3.80 0.03 0.32 0.52 —-2.73 —3.44
M4 0.66 3271 17.26 481 7.58 4.19 0.10 0.08 0.04 0.01 —3.87 —7.23
M5 4.67 6092 2.11 0.73 051 0.18 044 023 022 0.07 —4.79 —-1.20
M8 9.13 577 1.88 0.34 025 045 0.23 0.15 0.15 0.02 —1.76 —0.87
0.46*
Treatment mean = SD —329+132 —3.19+2.93
Overall mean + SD —2.69+1.18 —-3.64+2.12
Pacific 8.32 1.96 594 17.27 0.09 267 0.21 0.00 0.25 48.46 —4.47
7.48%  0.16* 1.30* 1.12%

NO; concentrations in the low N / P treatments, although it
made only a minor contribution to the overall nitrogen budget
(see the following sections for details).

Initial particulate and dissolved organic nitrogen concen-
trations (PON and DON) at depth were similar in all meso-
cosms (between 6 and 10 pmol L~1), and while there was no
clear temporal trend for PON, DON saw a steady decline by
about 30 % until day 40 (Fig. 3a, b).

H>S concentrations at depth were in the micromolar range
in all mesocosms and the surrounding Pacific and mostly
oscillated between 3 and 10umol L~! (Fig. 3f), equivalent
to 0.1-0.3 ppm. In contrast, concentrations in surface waters
were mostly in the high to low nanomolar range (data not
shown).

3.2 Rates of denitrification and anammox and overall
nitrogen loss

Measured denitrification rates in the 24 h incubations were
similar in all mesocosms, ranging between less than 1 to up
to ~80nmolL~'h~! (Table S1). More importantly, how-
ever, towards the end, measured rates exceeded those theo-
retically sustainable by substrate availability, i.e. combined
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in situ NO3 and NO, concentrations. In comparison, mea-
sured denitrification rates in samples from the surrounding
Pacific were comparable, although more variable, between
consecutive measurement days.

Estimates for in situ denitrification (Eq. 5) were similar
to measured rates at the beginning of the experiment when
substrate availability was higher than or close to the half-
saturation constant for denitrification. Towards the end, at
high to low nanomolar substrate concentrations, in situ es-
timates were significantly lower (compare Tables 2 and S1).

Anammox was only detected on day 12 in mesocosms 7
and 8 at rates significantly smaller than those typical for den-
itrification (Table 2). In contrast, anammox was occasionally
detected in the surrounding Pacific Ocean, i.e. on days 8§, 12,
and 46.

When comparing potential nitrogen loss, calculated as the
sum of in situ estimates of denitrification and anammox over
the first 38 d prior to the onset of orni-eutrophication (see
Sect. 2.4 and Table 2 for details), with estimates of total ni-
trogen losses in each mesocosm from a nitrogen budget ap-
proach (compare Table 2 and Fig. 4 and see the next sec-
tion for details), they were similar, with a mean of 2.69+1.18
and 3.64 £2.12 umol L™, respectively. It is acknowledged,
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Figure 3. Temporal evolution of depth-integrated bottom
layer (a) PON, (b) DON, (c) nitrate (NO3), and (d) nitrite
(NO;), together with CTD-derived (e) oxygen (O;) and (f) hydro-
gen sulfide (H,S) concentrations at the Niskin sampling depth in
the mesocosms (M1-MS8) and the surrounding Pacific. Blue and
red denote the low N /P and very low N /P deep water additions,
respectively (see Sect. 2.2 for details). The dashed green lines
denote deep water additions on days 11 and 12, while the dotted
black lines denote additions of a brine solution to the bottom layer
to increase salinity, strengthen stratification, and reduce mixing.
See Sect. 2 for details.
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Figure 4. Representative example of a total nitrogen budget from
mesocosm 7, considering all relevant pools such as particulate or-
ganic nitrogen (PON), dissolved organic nitrogen (DON), and dis-
solved inorganic nitrogen in the form of nitrate (NO;), nitrite
(NO; ), and ammonium (NHI), cumulative particulate organic ni-
trogen exported to the sediment trap (Ngeq), and the net change to all
the above-mentioned nitrogen species (with the exception of PON,
for which there was no deep water data) by deep water addition
(Npw). Black horizontal markers denote the total amount of nitro-
gen in these pools, calculated as an average of 3 consecutive sam-
pling days at the start of the experiment (days 1-3) and towards
the end (days 36-40), prior to the onset of orni-eutrophication. The
deficit in this N budget comprises all nitrogen loss processes, dom-
inated by denitrification (compare Table 2). Please note that the ini-
tial dip in nitrogen inventory is probably the result of a lag phase of
nitrogen settling into the sediment trap.

however, that there was no statistically significant correlation
between the two approaches.

3.3 Nitrogen budget

Summing up all organic and inorganic nitrogen species (ex-
cluding dissolved gases) in the water column, i.e. PON,
DON, NO;, NO,, NHI, Nsed (nitrogen exported through
the sediment traps), and Npw (overall deep water addition
changes to the various nitrogen pools), revealed a first phase
in all mesocosms for which the budget did not seem to be
closed, as evidenced by a constant decline in total N during
the first 2 weeks (Fig. 4). This was followed by a steady in-
crease in total N until day 40, which was still below start-
ing levels in all mesocosms. This net loss reflects, as we
will argue below, the combined nitrogen loss processes, such
as denitrification and anammox, exceeding nitrogen fixation,
which was less than 0.1 umol L™! over the entire water col-
umn in this period (Leila Kittu, personal communication,
2020). Finally, the last 10d were characterised by a rapid
increase in total N, mostly driven by rising surface PON
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concentrations, following continuous biomass production fu-
elled by external orni-eutrophication, i.e. the introduction of
nitrogen-rich bird faeces to the mesocosms (see Bach et al.,
2020a, for details).

3.4 Stepwise multiple linear regressions

In terms of RZ, there was a turning point in the number of
potential main variables to explain in situ denitrification rates
in stepwise multiple linear regressions (MLRs) with interac-
tions. Above four to five independent variables, R? only in-
creased slightly, while below it decreased relatively quickly
(Fig. 5a). Both models with the highest R, for four and five
main variables, identified NO, , NO; , and PON as those with
the highest positive main effect sizes, with the remaining
variables having relatively low effect sizes (Fig. 5b, d; Ta-
ble 3). Finally, O, had a small negative main effect size in
both models.

The resulting linear regression of in situ (compare Table 2)
versus predicted denitrification rates slightly deviated from
anideal 1 : 1 relationship and had a small, yet positive, y axis
intercept, meaning that lower denitrification rates would be
over, while higher ones underestimated (Fig. 5c).

4 Discussion

A discussion on the unusual situation of a coastal El Nifio
during our study period, i.e. significant warming of surface
waters, increasing stratification, and reducing upwelling in-
tensity and/or frequency can be found elsewhere (Bach et al.,
2020a). Most importantly, however, there were also multi-
ple upwelling events in the surrounding Pacific during this
time which were of similar magnitude to our experimental
upwelling (Chen et al., 2021), providing the natural context.

4.1 Denitrification rates and nitrogen budgets

Denitrification rates measured in the incubations of water
from the mesocosms and the surrounding Pacific of up to
~80nmol Ny L=! h™! (although mostly well below, at a me-
dian of 12.4) were within the range of reported rates in Pe-
ruvian ODZ and OMZ waters (Farias et al., 2009; Dalsgaard
et al., 2012). This was despite significantly higher oxygen
concentrations here than typical for suboxic ODZs, i.e. less
than ~ 6 umol L-! (Tyson and Pearson, 1991; Yang et al.,
2017), although denitrification can be relatively insensitive
to oxygen concentrations of up to at least 30—40 umol L ™!
(Farias et al., 2009), which is higher than levels in our study
for most of the time (see Fig. 3 but also Sect. 4.2.2).

Most interestingly, measured denitrification rates in incu-
bations of mesocosm waters during the second half of the
experiment exceeded those theoretically sustainable at in situ
substrate availability (compare Sect. 2.4 and Table 2). Nitri-
fication, supplying additional nitrite for denitrification, can
operate at low micromolar (and even nanomolar) levels such
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as those found in our study (Bristow et al., 2016). However,
a significant contribution to measured denitrification rates is
unlikely as there and elsewhere (Peng et al., 2016; Santoro
et al., 2021) nitrification rates were usually at least an order
of magnitude lower than our measured denitrification rates.
Hence, the reason for higher measured rates is most likely
found in the fact that both NO; and NO, concentrations
had dropped below 0.1 or even 0.01 umolL~! during this
stage, indicating that the denitrifying community was actu-
ally substrate limited. Such an observation was also made by
Michiels et al. (2019) in a temperate fjord system. In compar-
ison, denitrification rates in the surrounding Pacific waters
had a higher day-to-day variability, and substrate limitation
only occurred once. This is to be expected in a much more
variable system characterised by frequent upwelling events
of oxygen-depleted waters (Fig. 2) with relatively higher
NO3 and NO, concentrations (Fig. 3¢, d).

Calculated Michaelis—Menten kinetic scaled estimates for
in situ denitrification in the mesocosms and the surrounding
Pacific were lower than measured rates during the incuba-
tions. This was particularly the case during the second half
of the experiment, which reinforces the notion of substrate
limitation.

The primary drivers of in situ denitrification rates appeared
to be the availability of NO, and NOj;, followed by partic-
ulate organic matter (nitrogen), as indicated by multiple lin-
ear regression and effect size analysis (Fig. 5). This suggests
that heterotrophic rather than chemolithotrophic denitrifica-
tion was dominant (compare Sect. 4.2.2), as all three are sub-
strates for the former process and eventually limit rates. The
reason for NO, rather than NO; concentrations explaining
the rates of denitrification in one of the MLRs could be found
in the following. As denitrification from NO5 to Ny involves
multiple and independent steps and organisms, the correla-
tion between the N, production rate and a substrate concen-
tration should become better the closer one comes to the end
of this chain (Fig. 1). For example, there should be a perfect
correlation between N, O concentrations and N, production
rate, and NO3_ concentrations and their turnover to NO, are
meaningless if the intermediate steps to nitric and nitrous ox-
ide are blocked or constitute a bottleneck. This would also
contribute to the finding that denitrification rate measure-
ments based on ISNOS_ can be lower than those based on
15N02_ (Hamersley et al., 2007).

Overall nitrogen loss, calculated from in situ denitrifica-
tion rates over the first 38 d of the experiment prior to the
onset of orni-eutrophication, was comparable to an alterna-
tive estimate that was based on a full nitrogen budget in each
mesocosm (Fig. 4; Table 2). The means of both methods,
ie. 2.69 £ 1.18 and 3.64 +2.12, were insignificantly differ-
ent, although there was no statistically significant correla-
tion when all mesocosms were compared. However, given
that the nitrogen budget calculations involved a mass balance
of seven entities with individual measurement uncertainties,
this probably does not come as a surprise. There were also
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Table 3. Multiple linear regression statistics (standard error — SE; # and p values), describing denitrification in response to various environ-
mental variables, for the best five-variable model (in terms of Rz), with interactions (compare Fig. 5¢), and the best four-variable model.

Estimate SE t p ‘ Estimate SE t p
(Intercept) 25529 15437 16537 0.104 | (Intercept) 0.7507 1.0888  0.6894  0.4933
PON 0.0039  0.1037 0.0377 0.970 | PON —0.0382 0.1118 —0.3420 0.734
NO; 3.2562 1.1318 2.8770 0.006 | NO3 5.9709 0.7551 7.9072 < 0.001
NO, —5.1120 9.3374 —0.5475 0.586 | NO, —29.494 48048 —6.1385 < 0.001
(0)) —0.0964 0.0515 —1.8742 0.066 | Oy 472x107%  0.0234 0.0202 0.984
H,S —0.4238 0.2360 —1.7958 0.078 | PON/NO3 —0.3501 0.0624 —5.6093 < 0.001
PON/NO;  —0.3568 0.0593 —6.0169 <0.001 | PON/NO, 4.3858 0.6737 6.5103 < 0.001
PON/NO; 3.7572  0.6650 5.6499 <0.001 | NOy /NO, —3.5869 0.8114 —4.4207 < 0.001
NO; /NO,  -24176 0.6895 —3.5065 <0.001 | NO; /O, —0.0434 0.0122 —-3.5715 < 0.001
NO3 /Oy —0.0350 0.0107 —=3.2777 0.002 | NO;3 /Oy 0.1829  0.0570 3.2073 0.002
NO3 /HpS 0.3773  0.1476 2.5571 0.013
NO, /HpS —2.5429 0.8945 —2.8429 0.006
07 /HpS 0.0183  0.0090 2.0350 0.047
R? 0.8109 0.7666
== no statistically significant differences between the two deep
0.9 1 (a) ey © .(1). EPON: Toéy (b) water addition treatments, which was most likely due to rel-
0.8 (35) INO;: 010856 atively small differences in dissolved inorganic nitrogen in
o é 07 (35). ° ;NO'2:0101.9 both waters in rel'flti(.)n to the 0.V§rall nitrogen pool in the
: mesocosms and a similar N deficit in both deep water batches
0.6 (21). 0219310529 (Table 1). However, N loss estimated from in situ denitri-
05 S 1710104 fication rates in the low N /P mesocosms was significantly
2 4 6 8 0 10 20 lower than the budget estimate. It is noted, however, that in
# of Main Variables Main Effect situ denitrification rates are a conservative estimate that po-
o (d) tentially underestimate the true loss. For instance, adopting
:PON:0to 11.7 a lower half-saturation rate constant of 2 umol L™! (Eqs. 4
NO; 0t a;e_ and 5) would remove any statistically significant difference
L —o— between the two approaches. Furthermore, NO3 and NO;
iNO3:0t0 1.9 standing stocks most likely underestimate availability and,
e;o 9310529 hence, in situ denitrification rates calculated here because of
= hidden turnover.
) o 10 20 Finally, modelling exercises suggest that nitrogen loss in
Denit Main Effect

in situ

Figure 5. Stepwise multiple linear regressions (MLRs) of in situ
denitrification rates in the mesocosms against up to seven poten-
tial predictors and their interactions (PON, PONg.4, DON, NO5,
NO, , O3, and HS), with the (a) reducing numbers of measured
variables and resulting maximum R2. The red arrows denote the
relatively small increase in maximum R? beyond five main vari-
ables and the relatively large decrease below, indicating this to be
the sweet spot in terms of balancing the model complexity with
predictive power and avoiding overfitting (see Sect. 2 for details).
Numbers in parentheses denote the number of possible predictor
combinations, i.e. MLRs fitted. (b) Main effect sizes of the step-
wise MLRs with five main variables and the highest (0.8109) R?
(compare Table 3). (¢) Linear fit through in situ and predicted den-
itrification rates (nanomole dinitrogen per litre per hour; hereafter
nmol Ny L} hfl) by the MLR with five main variables. (d) Main
effect sizes of the stepwise MLR with four main variables and the
highest (0.7666) R? (compare Table 3).
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the water column is linked with mature El Nifio/La Nifia
periods, with up to 70 % reduced rates during the former,
most likely linked to increased water column oxygen con-
centrations at reduced upwelling and/or enhanced stratifica-
tion (Deutsch et al., 2011; Yang et al., 2017), and increasing
mesoscale turbulence and associated offshore nutrient export
by eddies (Espinoza-Morriberén et al., 2017). This suggests
that the rates observed here could actually be significantly
higher in the more frequent La Nifia periods.

4.2 Rates of anammox and the lack thereof in the
mesocosms

Anammox and denitrification were first reported in the east-
ern tropical South Pacific (ETSP) in 2006 (Thamdrup et al.,
2006), and the ETSP remains the most frequently sampled
and most thoroughly characterised open ocean OMZ region.
Anammox was the dominant N loss process in several stud-
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ies, where denitrification was either not (Hamersley et al.,
2007) or only sporadically (Kalvelage et al., 2013) detected.
Subsequent studies in the ETSP detected both processes, and
anammox was a substantial and mostly dominant part of the
total N loss. There was an average of 78 % anammox along a
Chilean coastal transect (Dalsgaard et al., 2012), 82 %-90 %
at two high-resolution stations (De Brabandere et al., 2014),
and 49 +£20% over four high-resolution stations (Babbin
et al., 2020).

Anammox requires a source of NHA|r and NOZ_ , Which
must either be produced in situ by the remineralisation of
organic matter in the absence of oxygen (as, for instance, by
denitrification) or must be transported into the system from
elsewhere, e.g. from adjacent sediments (Ward, 2013). When
both processes are supported by organic matter remineralisa-
tion, then there is theoretical (Paulmier et al., 2009; Koeve
and Kéhler, 2010) and experimental evidence (Babbin et al.,
2014) that the ratio of denitrification to anammox should
be connected to the elemental composition of organic mat-
ter being decomposed, at least on larger spatial and tempo-
ral scales. The reasoning behind this connection is that com-
plete anaerobic organic matter decomposition by denitrifica-
tion produces NHI and N, in quantities mostly dependent
on the carbon to nitrogen ratio (C /N) of the organic mat-
ter being decomposed. Hence, this ratio dictates the denitri-
fication (only utilising NO3™ and/or NO, ) to anammox (util-
ising both NO; and NHI) ratio in a steady state (Babbin
et al., 2014). However, DNRA could also supply NHI for
anammox. Although there have been reports of DNRA in
the ETSP (Lam et al., 2009), it is usually negligible in the
water column (De Brabandere et al., 2014; Kalvelage et al.,
2013) and rather restricted to shallow coastal systems dom-
inated by sediments (Jensen et al., 2011). In the absence
of DNRA, complete anaerobic decomposition of average
phytoplankton-derived organic matter, i.e. C19gsH175042N16P
(Anderson, 1995), would require a ~28 % contribution of
anammox to overall N loss via these two processes (Babbin
et al., 2014).

The reason for an anammox dominance in several studies
mentioned above, despite above outlined stoichiometric con-
straints, could be partial denitrification of NO; to NO, with-
out the following steps leading to N, production, supplying
both NO; and NHI for anammox (Lam et al., 2009; Jensen
et al., 2011; Kalvelage et al., 2013; Peters et al., 2016). Fur-
thermore, the ratio of NO, to NHZ‘r produced by organic
matter decomposition of a certain C / N ratio could also be
influenced by anaerobic chemolithotrophic nitrite oxidation
(compare Fig. 1), looping NO; back to NO5' for further par-
tial denitrification and associated NHI production (Babbin
et al., 2020).

In summary, anammox, in the absence of denitrification, is
difficult to explain (although partial denitrification is not eas-
ily detected), while denitrification in the absences of anam-
mox is rarely observed in the ETSP but presents no stoichio-
metric conflicts.
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4.2.1 Organic matter C / N in mesocosms

For the first 38 d of the experiment, particulate organic matter
in the bottom layer of the mesocosms, where the N loss pro-
cess incubation samples were taken from, hada C / N of ~ 7—
8 (compare Bach et al., 2020a), which would not change the
theoretical anammox contribution of ~ 28 % by much. How-
ever, this ratio could be misleading as the particulate organic
matter will be comprised by more and less labile fractions. A
good proxy for that should be to just consider the freshly pro-
duced organic matter, i.e. the particulate and dissolved matter
in the sunlit surface layer of the mesocosms in our case. In-
terestingly, just looking at C / N of standing stocks for partic-
ulate organic matter, it was initially lower than in the bottom
layer, indicative of preferential nitrogen remineralisation at
depth, but increased to values of ~ 10 in all mesocosms but
one (no bloom of the dinoflagellate Akashiwo sanguinea; see
Bach et al. (2020a), for details) after the deep water addi-
tion (Fig. S4). Similarly, C /N in dissolved organic matter
started already at about 10, increasing to up to 30 after the
deep water addition, and when summed up to total organic
matter, C /N levels of up to 20 were reached (Fig. S4). In-
creasing C /N from 6.625 to 20 would reduce the theoreti-
cal anammox contribution to only about 10 %. Furthermore,
as already mentioned above, it should not be the standing
stocks that are considered but the actual fresh production.
Unfortunately, neither C nor N production were directly mea-
sured, but gauging the change in total organic carbon (TOC)
concentrations after the deep water addition suggests that at
least ~ 100 umol L™! were produced (Fig. S4). In contrast,
total organic nitrogen (TON) concentrations hardly changed
at all, suggesting even higher C /N in freshly produced or-
ganic matter than in measured standing stocks. This could
be the result of general dissolved inorganic nitrogen limita-
tion and, hence, carbon overconsumption (Toggweiler, 1993)
but also changes in the phytoplankton community composi-
tion (see Bach et al., 2020a, for details). It is noted, though,
that changes in organic matter standing stocks over time are
not necessarily a good indicator of the quantity and quality
of fresh production due to unknown and potentially differ-
ent turnover times for each element, although it is probably
better than using standing stocks themselves. In this sense,
the ODZ/OMZ signature of upwelled water, i.e. its nitrogen
deficit, should influence the ratio of denitrification to anam-
mox that is subsequently measured. Hence, regions with ei-
ther one or the other process dominating could be indicative
of the upwelling source water history.

4.2.2 Oxygen and hydrogen sulfide in mesocosms

Varying ratios of anammox to denitrification could also be
the result of different sensitivities of both processes to pre-
vailing oxygen concentrations. However, while there are a
few experiments that have directly addressed the oxygen
sensitivity of various N cycling processes, there appears to
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be no straightforward answer. For instance, in manipulative
experiments, Jensen et al. (2008) found anammox at oxy-
gen concentrations of up to ~ 12.5umol L~!, with denitri-
fication not encountered at all. This is similar to Kalve-
lage et al. (2011), who observed anammox to cease above
~ 20 umol L=!. And although no full denitrification was ob-
served to at least NO or N;O, the first step from NOj3 to
NO, was found to occur even at the highest oxygen con-
centration of ~ 25 umol L~L. This is, in turn, consistent with
the nitrate reduction observed to at least N, O at oxygen con-
centrations of up to ~30-40umol L~ (Frey et al., 2020).
In contrast, both anammox and denitrification can already be
significantly or completely inhibited by oxygen additions of
3 or 8umol L™! (Babbin et al., 2014) or even lower (Dals-
gaard et al., 2014). In essence, there is no clear indication of
one process being more sensitive to oxygen than the other,
which is potentially also related to variability in oxygen con-
centrations on small scales, i.e. in microenvironments around
particles which are not captured by bulk seawater oxygen
concentration measurements. And, indeed, there is evidence
that microbial diversity in the OMZ is critically linked to par-
ticles, as are rates of denitrification and anammox (Ganesh
et al., 2014, 2015).

The situation appears to be similar for H,S, which, fur-
thermore, has been observed to reach 10 umol L™! and even
higher in the coastal subsurface ETSP close to our study lo-
cation (Callbeck et al., 2018, 2019). H,S has been reported
to completely inhibit anammox at 3 umol L™! (Jensen et al.,
2008), a concentration similar to that at the bottom layer of
our mesocosms, while Dalsgaard et al. (2014) found no effect
on Nj production by anammox, or denitrification, at slightly
lower levels of 1 umol L™!. Concerning denitrification, Dals-
gaard et al. (2013) reported no effects of H,S at even higher
concentrations of up to 10 umol L™!, which is in the range of
maximum concentrations found in our study, and there was
stimulation in some instances, although this is most likely
related to chemolithotrophic as opposed to heterotrophic
denitrification (see Dalsgaard et al., 2013; Bonaglia et al.,
2016, and references therein). Chemolithotrophic denitrifi-
cation coupled to H,S oxidation has also been hypothesised
for coastal high H»S stations off Peru by Kalvelage et al.
(2013). Interestingly, by day 16 and onwards, the anammox
functional marker gene hzo (Schmid et al., 2008) was not de-
tectable anymore in any of the mesocosms (data not shown),
which could be linked to relatively high H>S concentrations,
explaining the lack of anammox — at least for most parts of
the experiment.

5 Conclusions: ODZ/OMZ nitrogen budget
implications

The loss of, on average, 3—4 umol L~! of nitrogen in our

mesocosms fits well to zonal estimates by DeVries et al.
(2012) for the ODZ in the eastern South Pacific between
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75-100 m depth, where oxygen levels were similar to those
encountered in our study (Chang et al., 2010), although the
latter study reported a 2-3 times higher nitrogen deficit. Fur-
thermore, the overall amount of nitrogen loss measured in
the Pacific was at the upper end of ranges encountered in the
mesocosms, potentially connected to substrate limitation in
the mesocosms during the second half of the experiment (Ta-
ble 2).

In contrast to shipboard measurements, the mesocosms
offer the unique opportunity to put the various nitrogen
pathways, i.e. loss as opposed to initial bioavailable stand-
ing stocks and export, into context. Between ~ 1 and
5.5umol L~! of nitrogen were lost as N», representing up
to 20 % of the initially bioavailable inorganic and organic ni-
trogen until day 38 of the experiment (compare Table 2 and
Fig. 4). Interestingly, the amount of particulate organic nitro-
gen being exported below 20 m, i.e. the approximate depth of
the sediment traps at the bottom of the mesocosms (compare
Fig. 1 in Bach et al., 2020a), was in the same range. This
indicates that, in the Peruvian EBUS, about half of the nitro-
gen that could be exported to depth would already be lost, i.e.
converted to N», in a relatively shallow layer of the surface
ocean, provided that there were oxygen-deficient conditions
during the coastal upwelling as in our study (Fig. 2). Fur-
thermore, over the entire pelagic water column, nitrogen loss
of exported organic matter is likely to be even higher, sug-
gesting that the majority of the dissolved inorganic nitrogen
assimilated during new production (equalling export produc-
tion on larger scales) should actually be lost in EBUSs.

Similar conclusions can also be reached by alternative
means, i.e. by starting with global export production. Recent
estimates based on observations and models range between
~5and 15PgCyr~!, also including, next to the gravitation-
driven biological pump, those by particle injection (see Boyd
et al., 2019, and references therein). Assuming a Redfield
molar C /N of 6.625 (Redfield et al., 1963) would translate
to 0.75-2.26 PgNyr~! being exported. Furthermore, con-
sidering that about 5 % of global primary production and,
hence, potential export production is located in the surface
ocean of the four major EBUSs (Carr, 2002), the Arabian
Sea (Vijayaraghavan and Krishna Kumari, 1989) and the
Bay of Bengal (Poornima et al., 2020) above the ODZs and
OMZs, about 38-113 Tg N yr~! could potentially be lost. In
comparison, estimates of water column denitrification and/or
anammox, i.e. 20 %-35 % of total marine losses of about
260 £ 100 TgN yr_l (see Zhang et al., 2020, and references
therein), then range between 52 420 and 91 +35TgNyr~!,
indicating that a significant portion, if not the majority, of the
exported nitrogen is indeed lost in ODZs and OMZs.

Nitrogen cycling in ODZs and OMZs currently plays a
very important role in the overall marine nitrogen budget.
However, the magnitude and direction of change in the ac-
tual nitrogen loss term in response to ongoing climate and
ocean change (e.g. ocean stratification, acidification, and/or
changes in temperature and oxygen levels) is uncertain. This
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issue is further complicated by uncertainties in future pri-
mary productivity and organic matter export estimates. For
instance, depending on the representative concentration path-
way, future export production could decrease as a result of
changes to community structure (see Bindoff et al., 2019, for
details and references therein). In summary, future changes
in upwelling intensity and frequency, as well as the other
potential biotic and abiotic factors mentioned above, could
change the nitrogen (im)balance in ODZs and OMZs, having
a significant impact on the overall marine nitrogen budget.
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