215 research outputs found

    Molecular fluorine chemistry in the early Universe

    Full text link
    Some models of Big Bang nucleosynthesis suggest that very high baryon density regions were formed in the early Universe, and generated the production of heavy elements other than lithium such as fluorine F. We present a comprehensive chemistry of fluorine in the post-recombination epoch. Calculation of F, F- and HF abundances, as a function of redshift z, are carried out. The main result is that the chemical conditions in the early Universe can lead to the formation of HF. The final abundance of the diatomic molecule HF is predicted to be close to 3.75 10(-17) when the initial abundance of neutral fluorine F is 10(-15). These results indicate that molecules of fluorine HF were already present during the dark age. This could have implications on the evolution of proto-objects and on the anisotropies of cosmic microwave background radiation. Hydride of fluorine HF may affect enhancement of the emission line intensity from the proto-objects and could produce spectral-spatial fluctuations.Comment: Accepted in Astronomy and Astrophysics, 7 pages, 2 figure

    Chemistry of heavy elements in the Dark Ages

    Get PDF
    Primordial molecules were formed during the Dark Ages, i.e. the time between recombination and reionization in the early Universe. The purpose of this article is to analyze the formation of primordial molecules based on heavy elements during the Dark Ages, with elemental abundances taken from different nucleosynthesis models. We present calculations of the full non-linear equation set governing the primordial chemistry. We consider the evolution of 45 chemical species and use an implicit multistep method of variable order of precision with an adaptive stepsize control. We find that the most abundant Dark Ages molecules based on heavy elements are CH and OH. Non-standard nucleosynthesis can lead to higher heavy element abundances while still satisfying the observed primordial light abundances. In that case, we show that the abundances of molecular species based on C, N, O and F can be enhanced by two orders of magnitude compared to the standard case, leading to a CH relative abundance higher than that of HD+ or H2D+.Comment: 14 pages, accepted by Astronomy and Astrophysic

    Limits on decaying dark energy density models from the CMB temperature-redshift relation

    Full text link
    The nature of the dark energy is still a mystery and several models have been proposed to explain it. Here we consider a phenomenological model for dark energy decay into photons and particles as proposed by Lima (J. Lima, Phys. Rev. D 54, 2571 (1996)). He studied the thermodynamic aspects of decaying dark energy models in particular in the case of a continuous photon creation and/or disruption. Following his approach, we derive a temperature redshift relation for the CMB which depends on the effective equation of state weffw_{eff} and on the "adiabatic index" γ\gamma. Comparing our relation with the data on the CMB temperature as a function of the redshift obtained from Sunyaev-Zel'dovich observations and at higher redshift from quasar absorption line spectra, we find weff=0.97±0.034w_{eff}=-0.97 \pm 0.034, adopting for the adiabatic index γ=4/3\gamma=4/3, in good agreement with current estimates and still compatible with weff=1w_{eff}=-1, implying that the dark energy content being constant in time.Comment: 8 pages, 1 figur

    Constraining decaying dark energy density models with the CMB temperature-redshift relation

    Full text link
    We discuss the thermodynamic and dynamical properties of a variable dark energy model with density scaling as ρx(1+z)m\rho_x \propto (1+z)^{m}, z being the redshift. These models lead to the creation/disruption of matter and radiation, which affect the cosmic evolution of both matter and radiation components in the Universe. In particular, we have studied the temperature-redshift relation of radiation, which has been constrained using a recent collection of cosmic microwave background (CMB) temperature measurements up to z3z \sim 3. We find that, within the uncertainties, the model is indistinguishable from a cosmological constant which does not exchange any particles with other components. Future observations, in particular measurements of CMB temperature at large redshift, will allow to give firmer bounds on the effective equation of state parameter weffw_{eff} for such types of dark energy models.Comment: 9 pages, 1 figure, to appear in the Proceedings of the 3rd Italian-Pakistani Workshop on Relativistic Astrophysics, Lecce 20-22 June 2011, published in Journal of Physics: Conference Series (JPCS

    Enfants exposés à la violence dans le couple parental : étude rétrospective des données récoltées auprès de 430 mères et pères de 654 enfants âgés de 0 à 17 ans, lorsque ces parents avaient consulté l’Unité de médecine des violences du CHUV suite à un événement violent dans le couple survenu entre 2011 et 2014

    Get PDF
    [Préface (extraits)] L'étude menée par l'équipe de l'Unité de médecine des violences (UMV) entrouvre la porte de la chambre des enfants, afin d’amener un éclairage supplémentaire sur la nature et les circonstances de l’exposition des enfants à la violence dans le couple parental. Elle montre comment les enfants sont directement concernés dans la violence qui a lieu dans leur foyer. Souvent atteints psychiquement et physiquement, il n'est pas rare qu'ils aillent jusqu’à s'interposer au milieu de ces rapports de violence en se mettant eux-mêmes en danger lorsqu’ils prennent la défense de la victime, le plus souvent d'ailleurs leur mère. Dans d'autres cas, ils et elles intériorisent les modèles genrés d'auteur ou de victime auprès desquels ils grandissent et puisent leur identité. Les prérequis favorables à une transmission intergénérationnelle de la violence dans le couple sont renforcés par cette immersion quotidienne

    How exactly did the Universe become neutral?

    Get PDF
    We present a refined treatment of H, He I, and He II recombination in the early Universe. The difference from previous calculations is that we use multi-level atoms and evolve the population of each level with redshift by including all bound-bound and bound-free transitions. In this framework we follow several hundred atomic energy levels for H, He I, and He II combined. The main improvements of this method over previous recombination calculations are: (1) allowing excited atomic level populations to depart from an equilibrium distribution; (2) replacing the total recombination coefficient with recombination to and photoionization from each level directly at each redshift step; and (3) correct treatment of the He I atom, including the triplet and singlet states. We find that the ionization fraction x_e = n_e/n_H is approximately 10% smaller at redshifts <~800 than in previous calculations, due to the non-equilibrium of the excited states of H, which is caused by the strong but cool radiation field at those redshifts. In addition we find that He I recombination is delayed compared with previous calculations, and occurs only just before H recombination. These changes in turn can affect the predicted power spectrum of microwave anisotropies at the few percent level. Other improvements such as including molecular and ionic species of H, including complete heating and cooling terms for the evolution of the matter temperature, including collisional rates, and including feedback of the secondary spectral distortions on the radiation field, produce negligible change to x_e. The lower x_e at low z found in this work affects the abundances of H molecular and ionic species by 10-25%. However this difference is probably not larger than other uncertainties in the reaction rates.Comment: 24 pages, including 18 figures, using emulateapj.sty, to appear in ApJ, the code recfast can be obtained at http://www.astro.ubc.ca/people/scott/recfast.html (in FORTRAN) and http://cfa-www.harvard.edu/~sasselov/rec/ (in C

    A differential method of search for the CMBR spectral-spatial fluctuations

    Full text link
    The CMBR spectral-spatial fluctuations (SSF) formed in early Universe during the Dark Ages are considered. Main attention is focused on the narrow-band spectral properties of the SSF. Based on these properties we propose to use a differential method in order to search for these fluctuations. Description of the method is given.Comment: Latex, 9 pages with 4 Postscript figure

    HD molecules at high redshift: The absorption system at z=2.3377 towards Q 1232+082

    Get PDF
    We present a detailed analysis of the H_2 and HD absorption lines detected in the Damped Lyman-alpha (DLA) system at z_abs=2.3377 towards the quasar Q1232+082. We show that this intervening cloud has a covering factor smaller than unity and covers only part of the QSO broad emission line region. The zero flux level has to be corrected at the position of the saturated H_2 and optically thin HD lines by about 10%. We accurately determine the Doppler parameter for HD and CI lines (b = 1.86+/-0.20 km/s). We find a ratio N(HD)/N(H_2)=(7.1 +3.7 -2.2)x10^-5 that is significantly higher than what is observed in molecular clouds of the Galaxy. Chemical models suggest that in the physical conditions prevailing in the central part of molecular clouds, deuterium and hydrogen are mostly in their molecular forms. Assuming this is true, we derive D/H = (3.6 +1.9 -1.1)x10^-5. This implies that the corresponding baryon density of the Universe is \Omega_b h^2 = (0.0182 +0.0047 -0.0042). This value coincides within 1\sigma with that derived from observations of the CMBR as well as from observations of the D/H atomic ratio in low-metallicity QSO absorption line systems. The observation of HD at high redshift is therefore a promising independent method to constrain \Omega_b. This observation indicates as well a low astration factor of deuterium. This can be interpreted as the consequence of an intense infall of primordial gas onto the associated galaxy.Comment: 8 pages, 7 figures, 3 tables. Accepted for publication in MNRA

    Aplicaciones de la metabolómica

    Get PDF
    III Congreso de Alimentación, Nutrición y Dietética. Combinar la nutrición comunitaria y personalizada: nuevos retos

    HD/H2 Molecular Clouds in the Early Universe: The Problem of Primordial Deuterium

    Full text link
    We have detected new HD absorption systems at high redshifts, z_abs=2.626 and z_abs=1.777, identified in the spectra of the quasars J0812+3208 and Q1331+170, respectively. Each of these systems consists of two subsystems. The HD column densities have been determined: log(N(HD),A)=15.70+/-0.07 for z_A=2.626443(2) and log(N(HD),B)=12.98+/-0.22 for z_B=2.626276(2) in the spectrum of J0812+3208 and log(N(HD),C)=14.83+/-0.15 for z_C=1.77637(2) and log(N(HD),D)=14.61+/-0.20 for z_D=1.77670(3) in the spectrum of Q1331+170. The measured HD/H2 ratio for three of these subsystems has been found to be considerably higher than its values typical of clouds in our Galaxy. We discuss the problem of determining the primordial deuterium abundance, which is most sensitive to the baryon density of the Universe \Omega_{b}. Using a well-known model for the chemistry of a molecular cloud, we have estimated the isotopic ratio D/H=HD/2H_2=(2.97+/-0.55)x10^{-5} and the corresponding baryon density \Omega_{b}h^2=0.0205^{+0.0025}_{-0.0020}. This value is in good agreement with \Omega_{b}h^2=0.0226^{+0.0006}_{-0.0006} obtained by analyzing the cosmic microwave background radiation anisotropy. However, in high-redshift clouds, under conditions of low metallicity and low dust content, hydrogen may be incompletely molecularized even in the case of self-shielding. In this situation, the HD/2H_2 ratio may not correspond to the actual D/H isotopic ratio. We have estimated the cloud molecularization dynamics and the influence of cosmological evolutionary effects on it
    corecore