Abstract

The nature of the dark energy is still a mystery and several models have been proposed to explain it. Here we consider a phenomenological model for dark energy decay into photons and particles as proposed by Lima (J. Lima, Phys. Rev. D 54, 2571 (1996)). He studied the thermodynamic aspects of decaying dark energy models in particular in the case of a continuous photon creation and/or disruption. Following his approach, we derive a temperature redshift relation for the CMB which depends on the effective equation of state weffw_{eff} and on the "adiabatic index" γ\gamma. Comparing our relation with the data on the CMB temperature as a function of the redshift obtained from Sunyaev-Zel'dovich observations and at higher redshift from quasar absorption line spectra, we find weff=0.97±0.034w_{eff}=-0.97 \pm 0.034, adopting for the adiabatic index γ=4/3\gamma=4/3, in good agreement with current estimates and still compatible with weff=1w_{eff}=-1, implying that the dark energy content being constant in time.Comment: 8 pages, 1 figur

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 29/08/2022
    Last time updated on 09/07/2013
    Last time updated on 29/08/2022