279 research outputs found

    The imaging properties of the Gas Pixel Detector as a focal plane polarimeter

    Full text link
    X-rays are particularly suited to probe the physics of extreme objects. However, despite the enormous improvements of X-ray Astronomy in imaging, spectroscopy and timing, polarimetry remains largely unexplored. We propose the photoelectric polarimeter Gas Pixel Detector (GPD) as an instrument candidate to fill the gap of more than thirty years of lack of measurements. The GPD, in the focus of a telescope, will increase the sensitivity of orders of magnitude. Moreover, since it can measure the energy, the position, the arrival time and the polarization angle of every single photon, allows to perform polarimetry of subsets of data singled out from the spectrum, the light curve or the image of source. The GPD has an intrinsic very fine imaging capability and in this work we report on the calibration campaign carried out in 2012 at the PANTER X-ray test facility of the Max-Planck-Institut f\"ur extraterrestrische Physik of Garching (Germany) in which, for the first time, we coupled it to a JET-X optics module with a focal length of 3.5 m and an angular resolution of 18 arcsec at 4.5 keV. This configuration was proposed in 2012 aboard the X-ray Imaging Polarimetry Explorer (XIPE) in response to the ESA call for a small mission. We derived the imaging and polarimetric performance for extended sources like Pulsar Wind Nebulae and Supernova Remnants as case studies for the XIPE configuration, discussing also possible improvements by coupling the detector with advanced optics, having finer angular resolution and larger effective area, to study with more details extended objects.Comment: Accepted for publication in The Astrophysical Journal Supplemen

    The on-board calibration system of the X-ray Imaging Polarimetry Explorer (XIPE)

    Get PDF
    The calibration system for XIPE is aimed at providing a way to check and correct possible variations of performance of the Gas Pixel Detector during the three years of operation in orbit (plus two years of possible extended operation), while facilitating the observation of the celestial sources. This will be performed by using a filter wheel with a large heritage having a set of positions for the calibration and the observation systems. In particular, it will allow for correcting possible gain variation, for measuring the modulation factor using a polarized source, for removing non interesting bright sources in the field of view and for observing very bright celestial sources. The on-board calibration system is composed of three filter wheels, one for each detector and it is expected to operate for a small number of times during the year. Moreover, since it operates once at a time, within the observation mode, it allows for simultaneous calibration and acquisition from celestial sources on different detectors. In this paper we present the scope and the requirements of the on-board calibration system, its design, and a description of its possible use in space

    Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV

    Get PDF
    We present the results of our analysis of cosmic-ray electrons using about 8 million electron candidates detected in the first 12 months on-orbit by the Fermi Large Area Telescope. This work extends our previously-published cosmic-ray electron spectrum down to 7 GeV, giving a spectral range of approximately 2.5 decades up to 1 TeV. We describe in detail the analysis and its validation using beam-test and on-orbit data. In addition, we describe the spectrum measured via a subset of events selected for the best energy resolution as a cross-check on the measurement using the full event sample. Our electron spectrum can be described with a power law E3.08±0.05\propto {\rm E}^{-3.08 \pm 0.05} with no prominent spectral features within systematic uncertainties. Within the limits of our uncertainties, we can accommodate a slight spectral hardening at around 100 GeV and a slight softening above 500 GeV.Comment: 20 pages, 23 figures, 2 tables, published in Physical Review D 82, 092004 (2010) - contact authors: C. Sgro', A. Moisee

    Multiple endocrine neoplasia type 2 syndromes (MEN 2): results from the ItaMEN network analysis on the prevalence of different genotypes and phenotypes.

    Get PDF
    OBJECTIVE: Multiple endocrine neoplasia type 2 (MEN 2) is a genetic disease characterized by medullary thyroid carcinoma (MTC) associated (MEN 2A and 2B) or not familial MTC (FMTC) with other endocrine neoplasia due to germline RET gene mutations. The prevalence of these rare genetic diseases and their corresponding RET mutations are unknown due to the small size of the study population. METHODS: We collected data on germline RET mutations of 250 families with hereditary MTC followed in 20 different Italian centres. RESULTS AND CONCLUSIONS: The most frequent RET amino acid substitution was Val804Met (19.6%) followed by Cys634Arg (13.6%). A total of 40 different germline RET mutations were present. Six families (2.4%) were negative for germline RET mutations. The comparison of the prevalence of RET germline mutations in the present study with those published by other European studies showed a higher prevalence of Val804Met and Ser891Ala mutations and a lower prevalence of Leu790Phe and Tyr791Phe (P<0.0001). A statistically significant higher prevalence of mutations affecting non-cysteine codons was also found (P<0.0001). Furthermore, the phenotype data collection showed an unexpected higher prevalence of FMTC (57.6%) with respect to other MEN 2 syndromes (34% MEN 2A and 6.8% of MEN 2B). In conclusion, we observed a statistically significant different pattern of RET mutations in Italian MEN 2 families with respect to other European studies and a higher prevalence of FMTC phenotype. The different ethnic origins of the patients and the particular attention given to analysing apparently sporadic MTC for RET germline mutations may explain these findings

    XIPE: the X-ray imaging polarimetry explorer

    Get PDF
    Abstract X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2-10 keV band in 105 s for pointed observations, and 0.6 % for an X10 class solar flare in the 15-35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14.7 arcmin × 14.7 arcmin. The spectral resolution is 20 % at 6 keV and the time resolution is 8 mus. The imaging capabilities of the JET-X optics and of the GPD have been demonstrated by a recent calibration campaign at PANTER X-ray test facility of the Max-Planck-Institut für extraterrestrische Physik (MPE, Germany). XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil). The data policy is organized with a Core Program that comprises three months of Science Verification Phase and 25 % of net observing time in the following 2 years. A competitive Guest Observer program covers the remaining 75 % of the net observing time

    The Italian National Register of infants with congenital hypothyroidism: twenty years of surveillance and study of congenital hypothyroidism

    Get PDF
    All the Italian Centres in charge of screening, diagnosis, and follow-up of infants with congenital hypothyroidism participate in the Italian National Registry of affected infants, which performs the nationwide surveillance of the disease. It was established in 1987 as a program of the Health Ministry and is coordinated by the Istituto Superiore di Sanità. The early diagnosis performed by the nationwide newborn screening programme, the prompt treatment and the appropriate clinical management of the patients carried out by the Follow-up Centres, and the surveillance of the disease performed by the National Register of infants with congenital hypothyroidism are the components of an integrated approach to the disease which has been successfully established in our country
    corecore