1,111 research outputs found

    Thermoelectric Response of an Interacting Two-Dimensional Electron Gas in Quantizing Magnetic Field

    Full text link
    We present a discussion of the linear thermoelectric response of an interacting electron gas in a quantizing magnetic field. Boundary currents can carry a significant fraction of the net current passing through the system. We derive general expressions for the bulk and boundary components of the number and energy currents. We show that the local current density may be described in terms of ``transport'' and ``internal magnetization'' contributions. The latter carry no net current and are not observable in standard transport experiments. We show that although Onsager relations cannot be applied to the local current, they are valid for the transport currents and hence for the currents observed in standard transport experiments. We relate three of the four thermoelectric response coefficients of a disorder-free interacting two-dimensional electron gas to equilibrium thermodynamic quantities. In particular, we show that the diffusion thermopower is proportional to the entropy per particle, and we compare this result with recent experimental observations.Comment: 18 pages, 2 postscript figures included. Revtex with epsf.tex and multicol.sty. In the revised version, the comparison with experimental observations at ν=1/2,3/2\nu=1/2, 3/2 is extended to include the possibility of corrections due to weak impurity scattering. The conclusions that we reach regarding the applicability of the composite fermion model at these filling fractions are not affecte

    Diffusion Thermopower at Even Denominator Fractions

    Get PDF
    We compute the electron diffusion thermopower at compressible Quantum Hall states corresponding to even denominator fractions in the framework of the composite fermion approach. It is shown that the deviation from the linear low temperature behavior of the termopower is dominated by the logarithmic temperature corrections to the conductivity and not to the thermoelectric coefficient, although such terms are present in both quantities. The enhanced magnitude of this effect compared to the zero field case may allow its observation with the existing experimental techniques.Comment: Latex, 12 pages, Nordita repor

    Thermohydrodynamics in Quantum Hall Systems

    Full text link
    A theory of thermohydrodynamics in two-dimensional electron systems in quantizing magnetic fields is developed including a nonlinear transport regime. Spatio-temporal variations of the electron temperature and the chemical potential in the local equilibrium are described by the equations of conservation with the number and thermal-energy flux densities. A model of these flux densities due to hopping and drift processes is introduced for a random potential varying slowly compared to both the magnetic length and the phase coherence length. The flux measured in the standard transport experiment is derived and is used to define a transport component of the flux density. The equations of conservation can be written in terms of the transport component only. As an illustration, the theory is applied to the Ettingshausen effect, in which a one-dimensional spatial variation of the electron temperature is produced perpendicular to the current.Comment: 10 pages, 1 figur

    In vivo characterization of connective tissue remodeling using infrared photoacoustic spectra

    Get PDF
    Premature cervical remodeling is a critical precursor of spontaneous preterm birth, and the remodeling process is characterized by an increase in tissue hydration. Nevertheless, current clinical measurements of cervical remodeling are subjective and detect only late events, such as cervical effacement and dilation. Here, we present a photoacoustic endoscope that can quantify tissue hydration by measuring near-infrared cervical spectra. We quantify the water contents of tissue-mimicking hydrogel phantoms as an analog of cervical connective tissue. Applying this method to pregnant women in vivo, we observed an increase in the water content of the cervix throughout pregnancy. The application of this technique in maternal healthcare may advance our understanding of cervical remodeling and provide a sensitive method for predicting preterm birth

    A rare missense mutation in <i>GJB3</i> (Cx31G45E) is associated with a unique cellular phenotype resulting in necrotic cell death

    Get PDF
    Erythrokeratodermia variabilis et progressiva (EKV-P) is caused by mutations in either the GJB3 (Cx31) or GJB4 genes (Cx30.3). We identified a rare GJB3 missense mutation, c.134G>A (p.G45E), in two unrelated patients and investigated its cellular characteristics. Expression of Cx31G45E-GFP caused previously undescribed changes within HeLa cells and HaCaT cells, a model human keratinocyte cell line. Cx31WT-GFP localised to the plasma membrane, but expression of Cx31G45E-GFP caused vacuolar expansion of the endoplasmic reticulum (ER), the mutant protein accumulated within the ER membrane and disassembly of the microtubular network occurred. No ER stress responses were evoked. Cx31WT-myc-myc-6xHis and Cx31G45E-GFP co-immunoprecipitated, indicative of heteromeric interaction, but co-expression with Cx31WT-mCherry, Cx26 or Cx30.3 did not mitigate the phenotype. Cx31 and Cx31G45E both co-immunoprecipitated with Cx43, indicating the ability to form heteromeric connexons. WT-Cx31 and Cx43 assembled into large gap junction plaques at points of cell-to-cell contact; Cx31G45E restricted the ability of Cx43 to reach the plasma membrane in both HaCaT cells and HeLa cells stably expressing Cx43 where the proteins strongly co-localised with the vacolourised ER. Cell viability assays identified an increase in cell death in cells expressing Cx31G45E-GFP, which FACS analysis determined was necrotic. Blocking connexin channel function with 18α-glycyrrhetinic acid did not completely rescue necrosis or prevent propidium iodide uptake, suggesting that expression of Cx31G45E-GFP damages the cellular membrane independent of its channel function. Our data suggest that entrapment of Cx43 and necrotic cell death in the epidermis could underlie the EKV skin phenotype

    Hamiltonian Theory of the FQHE: Conserving Approximation for Incompressible Fractions

    Full text link
    A microscopic Hamiltonian theory of the FQHE developed by Shankar and the present author based on the fermionic Chern-Simons approach has recently been quite successful in calculating gaps and finite tempertature properties in Fractional Quantum Hall states. Initially proposed as a small-qq theory, it was subsequently extended by Shankar to form an algebraically consistent theory for all qq in the lowest Landau level. Such a theory is amenable to a conserving approximation in which the constraints have vanishing correlators and decouple from physical response functions. Properties of the incompressible fractions are explored in this conserving approximation, including the magnetoexciton dispersions and the evolution of the small-qq structure factor as \nu\to\half. Finally, a formalism capable of dealing with a nonuniform ground state charge density is developed and used to show how the correct fractional value of the quasiparticle charge emerges from the theory.Comment: 15 pages, 2 eps figure

    Quasiparticle Hall Transport of d-wave Superconductors in Vortex State

    Full text link
    We present a theory of quasiparticle Hall transport in strongly type-II superconductors within their vortex state. We establish the existence of integer quantum spin Hall effect in clean unconventional dx2y2d_{x^2-y^2} superconductors in the vortex state from a general analysis of the Bogoliubov-de Gennes equation. The spin Hall conductivity σxys\sigma^s_{xy} is shown to be quantized in units of 8π\frac{\hbar}{8\pi}. This result does not rest on linearization of the BdG equations around Dirac nodes and therefore includes inter-nodal physics in its entirety. In addition, this result holds for a generic inversion-symmetric lattice of vortices as long as the magnetic field BB satisfies Hc1BHc2H_{c1} \ll B \ll H_{c2}. We then derive the Wiedemann-Franz law for the spin and thermal Hall conductivity in the vortex state. In the limit of T0T \to 0, the thermal Hall conductivity satisfies κxy=4π23(kB)2Tσxys\kappa_{x y}=\frac{4\pi^2}{3}(\frac{k_B}{\hbar})^2 T \sigma^s_{xy}. The transitions between different quantized values of σxys\sigma^s_{xy} as well as relation to conventional superconductors are discussed.Comment: 18 pages REVTex, 3 figures, references adde

    Corneodesmosin und die Genetik der Psoriasis vulgaris unter Betrachtung geschlechtsspezifischer Allel-Transmissionen im MHC

    Full text link
    Diese Arbeit befasst sich mit dem wichtigen genetischen Suszeptibilitäts-Lokus der Psoriasis vulgaris PSORS1. Von Interesse ist das Corneodesmosin-Gen (CDSN). Im Transmissions/Disequilibrium-Test (TDT) wurde bei 199 Falk-Rubinstein-Trios der Mikrosatelliten-Marker TN62 und der CDSN-SNP *1243 analysiert. Im RC-TDT ergab CDSN*1243 (Allel2) ein signifikantes p von 0,0084 und TN62 (Allel4) ein hochsignifikantes p von 6,2x10-7. Im Hinblick auf den paternalen Effekt der Psoriasis zeigt die parent-of-origin-Analyse jeweils ein Überwiegen der paternalen Transmissionen bei CDSN*1243(2) (pmat=0,023; ppat=0,00055) bzw. der maternalen Transmissionen bei TN62(4) (pmat=0,96x10-5; pat=0,00159). Die Ergebnisse sprechen für ein Kopplungsungleichgewicht zwischen CDSN*1243 und PSORS1, aber für unterschiedliche MHC-Haplotypen mit je CDSN*1243(2) oder TN62(4). Potentielle Transmissionseffekte können bei einer signifikanten Bestätigung des Befundes im Sinne einer genomischen Prägung interpretiert werden

    Hamiltonian Description of Composite Fermions: Magnetoexciton Dispersions

    Full text link
    A microscopic Hamiltonian theory of the FQHE, developed by Shankar and myself based on the fermionic Chern-Simons approach, has recently been quite successful in calculating gaps in Fractional Quantum Hall states, and in predicting approximate scaling relations between the gaps of different fractions. I now apply this formalism towards computing magnetoexciton dispersions (including spin-flip dispersions) in the ν=1/3\nu=1/3, 2/5, and 3/7 gapped fractions, and find approximate agreement with numerical results. I also analyse the evolution of these dispersions with increasing sample thickness, modelled by a potential soft at high momenta. New results are obtained for instabilities as a function of thickness for 2/5 and 3/7, and it is shown that the spin-polarized 2/5 state, in contrast to the spin-polarized 1/3 state, cannot be described as a simple quantum ferromagnet.Comment: 18 pages, 18 encapsulated ps figure

    Quality of life and clinical characteristics of self-improving congenital ichthyosis within the disease spectrum of autosomal recessive congenital ichthyosis

    Get PDF
    Background Autosomal-recessive congenital ichthyosis (ARCI) is a heterogeneous group of ichthyoses presenting at birth. Self-improving congenital ichthyosis (SICI) is a subtype of ARCI and is diagnosed when skin condition improves remarkably (within years) after birth. So far, there are sparse data on SICI and quality of life (QoL) in this ARCI subtype. This study aims to further delineate the clinical spectrum of SICI as a rather unique subtype of ARCI. Objectives This prospective study included 78 patients (median age: 15 years) with ARCI who were subdivided in SICI (n = 18) and non-SICI patients (nSICI, n = 60) by their ARCI phenotype. Methods Quality of life (QoL) was assessed using the (Children's) Dermatology Life Quality Index. Statistical analysis was performed with chi-squared and t-Tests. Results The genetically confirmed SICI patients presented causative mutations in the following genes: ALOXE3 (8/16; 50.0%), ALOX12B (6/16; 37.5%), PNPLA1 (1/16; 6.3%) and CYP4F22 (1/16; 6.3%). Hypo-/anhidrosis and insufficient vitamin D levels (<30 ng/mL) were often seen in SICI patients. Brachydactyly (a shortening of the 4th and 5th fingers) was statistically more frequent in SICI (P = 0.023) than in nSICI patients. A kink of the ear's helix was seen in half of the SICI patients and tends to occur more frequently in patients with ALOX12B mutations (P = 0.005). QoL was less impaired in patients under the age of 16, regardless of ARCI type. Conclusions SICI is an underestimated, milder clinical variant of ARCI including distinct features such as brachydactyly and kinking of the ears. Clinical experts should be aware of these features when seeing neonates with a collodion membrane. SICI patients should be regularly checked for clinical parameters such as hypo-/anhidrosis or vitamin D levels and monitored for changes in quality of life
    corecore