
                                                              

University of Dundee

A rare missense mutation in GJB3 (Cx31G45E) is associated with a unique cellular
phenotype resulting in necrotic cell death
Easton, J. A.; Alboulshi, A. K.; Kamps, M. A. F.; Brouns, G. H.; Broers, M. R.; Coull, B. J.; Oji,
V.; van Geel, M.; van Steensel, M. A. M.; Martin, P. E.
Published in:
Experimental Dermatology

DOI:
10.1111/exd.13542

Publication date:
2018

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Easton, J. A., Alboulshi, A. K., Kamps, M. A. F., Brouns, G. H., Broers, M. R., Coull, B. J., ... Martin, P. E. (2018).
A rare missense mutation in GJB3 (Cx31G45E) is associated with a unique cellular phenotype resulting in
necrotic cell death. Experimental Dermatology. https://doi.org/10.1111/exd.13542

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/153534224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1111/exd.13542
https://discovery.dundee.ac.uk/en/publications/537fb1da-262f-4a68-bee0-3ddf2f5b129a


A
cc

ep
te

d
 A

rt
ic

le

This article has been accepted for publication and undergone full peer review but has not 

been through the copyediting, typesetting, pagination and proofreading process, which may 

lead to differences between this version and the Version of Record. Please cite this article as 

doi: 10.1111/exd.13542 

This article is protected by copyright. All rights reserved. 

DR. PATRICIA E MARTIN (Orcid ID : 0000-0003-0890-8059) 

Article type      : Regular Article 

 

A rare missense mutation in GJB3 (Cx31G45E) is associated with a unique cellular 

phenotype resulting in necrotic cell death 
 

#J.A. Easton1,2, #A.K. Alboulshi3, M.A.F. Kamps1,2, G.H. Brouns 1, M.R. Broers1, B.J. Coull4, V. Oji5, M. 

van Geel1,2,5, M.A.M. van Steensel4,5,6, P.E. Martin3,  

1
Department of Dermatology, 

2
GROW School for Oncology and Developmental Biology, 

Maastricht University, Maastricht, The Netherlands, 
3
Department of Life Sciences, School of 

Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK; 
4
Division of 

Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, 

Dundee, UK, 
5
Department of Dermatology, University Hospital Münster, Münster, Germany,  

5
Department of Clinical Genetics, MUMC+, Maastricht, The Netherlands,

 
Division of 

Cancer Research, School of Medicine, 
6
Skin Research Institute of Singapore,

 
Institute of 

Medical Biology, Immunos, Singapore  

 

#JAE and AKA contributed equally to this work and share first authorship 

 

Correspondence to: 

3Patricia E Martin: email: patricia.martin@gcu.ac.uk 

Postal address: Dr P Martin, School of Health and Life Sciences, Department of Life Sciences, 

Glasgow Caledonian University, Glasgow, G4 0BA, Scotland, UK.  

Tel: +44 141 331 3726 

 

Key words: Connexin, EKV-P, Cell death, heteromeric Connexins 

 

http://crossmark.crossref.org/dialog/?doi=10.1111%2Fexd.13542&domain=pdf&date_stamp=2018-03-23


A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Abbreviations: 18GA: 18 Glycyrrhetinic acid; Cx: Connexin; DAPI: 4',6-diamidino-2-phenylindole; 

EKV-P: Erythrokeratodermia variabilis et progressiva; ER: endoplasmic reticulum; ERGIC: 

endoplasmic reticulum golgi intermediate compartment; GFP: Green Fluorescent Protein; GJ :gap 

junction; KID: keratitis ichthyosis deafness syndrome; PCR: polymerise chain reaction; PI: propidium 

iodide; SERCA2b: (sarcoplasmic reticulum calcium ATPase; UPR: unfolded protein response. 

 

Abstract 

Erythrokeratodermia variabilis et progressiva (EKV-P) is caused by mutations in either the 

GJB3 (Cx31) or GJB4 gene (Cx30.3).  We identified a rare GJB3 missense mutation, 

c.134G>A (p.G45E), in two unrelated patients and investigated its cellular characteristics. 

Expression of Cx31G45E-GFP caused previously undescribed changes within HeLa cells and 

HaCaT cells, a model human keratinocyte cell line. Cx31WT-GFP localised to the plasma 

membrane, but expression of Cx31G45E-GFP caused vacuolar expansion of the endoplasmic 

reticulum (ER), the mutant protein accumulated within the ER membrane and disassembly of 

the microtubular network occurred. No ER stress responses were evoked. Cx31WT-myc-

myc-6xHis and Cx31G45E-GFP co-immunoprecipitated, indicative of heteromeric 

interaction, but co-expression with Cx31WT-mCherry, Cx26 or Cx30.3 did not mitigate the 

phenotype. Cx31 and Cx31G45E both co-immunoprecipated with Cx43, indicating the ability 

to form heteromeric connexons. WT-Cx31 and Cx43 assembled into large gap junction 

plaques at points of cell to cell contact, Cx31G45E restricted the ability of Cx43 to reach the 

plasma membrane in both HaCaT cells and HeLa cells stably expressing Cx43 where the 

proteins strongly co-localised with the vacolourised ER. Cell viability assays identified an 

increase in cell death in cells expressing Cx31G45E-GFP, which FACS analysis determined 

was necrotic. Blocking connexin channel function with 18α-Glycyrrhetinic acid did not 

completely rescue necrosis or prevent propidium iodide uptake, suggesting that expression of 

Cx31G45E-GFP damages the cellular membrane independent of its channel function. Our 

data suggests that entrapment of Cx43 and necrotic cell death in the epidermis could underlie 

the EKV skin phenotype. 
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1. INTRODUCTION  

A healthy skin barrier requires a highly ordered and tightly regulated intercellular adhesion network, 

which includes adherens junctions, tight junctions and gap junctions (GJ). GJs mediate rapid 

intercellular communication and play a key role in epidermal integrity [1]. They are composed of 

connexins (Cxs), with 21 subtypes identified in humans, ranging in size from 25 to 62 kDa, with their 

nomenclature based on their molecular mass, e.g., Cx31 is a 31kDa protein [2]. Cxs are composed of 

four transmembrane domains linked by two highly conserved extracellular loops (EL1 and EL2) with 

one variable intracellular loop and carboxyl tail [3]. Cxs follow a classic biosynthetic pathway from 

the endoplasmic reticulum (ER), where they oligomerise to form a hexameric connexon (or 

hemichannel), that is trafficked in a closed state to the plasma membrane. Hemichannels can be 

induced to open under pathological conditions, but normally accrete laterally in a closed state along 

the plasma membrane to align and dock with a neighbouring channel and form a functional GJ unit 

[1, 3]. Within normal epidermis, at least  six Cx subtypes are differentially expressed. Connexin43 

(encoded by GJA1) and Cx31 (encoded by GJB3) are expressed throughout the epidermis, while Cx26 

(encoded by GJB2), Cx30 (encoded by GJB6), Cx30.3 (encoded by GJB4) tend to be associated with 

differentiated cells in the upper layers [4-8]. The importance of connexins in the skin is illustrated by 

various disorders caused by mutations in different beta-Cx subtypes [9-16]. Erythrokeratodermia 

variabilis et progressiva (EKV-P) (Mendes da Costa, EKV-P, MIM #133200) is caused by heterozygous 

mutations in either Cx31 or Cx30.3 e.g. [17-25]. The clinical appearance of EKV-P ranges from 

temporary, fast moving erythemas to permanent red-brown hyperkeratosis (supplementary Table 

1). With the possible exception of an erythema gyratum repens-like manifestation of EKV-P caused 

by Cx30.3 mutations, a genotype-phenotype correlation is not present [20, 26]. Disease-associated 

Cx31 mutations, when expressed in HeLa cells, result in both apoptotic and necrotic cell death [27, 

28]. Several studies indicate that ER stress is involved in this process [27, 29, 30]. We describe how a 

rare EKV-associated Cx31 mutant (G45E) [20, 22, 24] causes necrotic cell death through a unique 

effect on the ER and entrapment of Cx43. We suggest that this may be a novel connexin-mediated 

human disease mechanism. 

 

2. MATERIALS AND METHODS 

2.1 Construction of tagged Cx-WT and mutant constructs 

Wild type (WT) Cx31 was inserted into the vector pEGFP-N1 (BD Biosciences, Breda, The 

Netherlands) as previously reported and a range of mutations (Cx31G45E, Cx31delG45, Cx31G45A, 
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Cx31G45K, Cx31G45S, Cx31G45Q and Cx31G45W) introduced by site directed mutagenesis (see 

supplementary methods and supplementary Table 2) [12]. Cx31WT, Cx26WT and Cx30.3WT were 

inserted into the pmCherry-N1 vector (Clontech, via Westburg BV, Leusden, The Netherlands). A 

two-step process replacing the GFP tag with a myc-myc-6xHis tag from a plasmid gifted from Thomas 

Weimbs (Addgene plasmid # 12377 [31]) was used to generate a Cx31WT-myc-myc-6xHis tagged 

construct.  

 

2.2 Cell Culture and transfection 

Cell lines, HeLa Ohio (ATTC) and HaCaT cells (CLS, Eppelheim, Germany) or HeLa cells stably 

expressing Cx43 or Cx26 [32] were cultured under optimal conditions (see supplementary methods) 

and were transfected with relevant plasmid DNA for 24 h.  Transfection efficiency was 30-50%, 

assessed by GFP or mCherry auto fluorescence. 

Cells were treated as required with the Cx channel blocker 18 glycyrrhetinic acid (18αGA) (25µM, 

Sigma) for the duration of the experiment. Thapsigargin (1M, Sigma) was added for 8h prior to RNA 

and protein extraction to induce ER stress where appropriate. 

 

2.3 Immunofluorescence 

Cells were fixed in either ice-cold methanol or 4% (w/v) paraformaldehyde (as per antibody 

requirements) and processed for immunocytochemical analysis as previously described using a panel 

of antibodies (see supplementary information) [33].  

mCherry or GFP autoflourescence determined localisation of Cx-tagged proteins. Imaging 

was carried out using a Leica TCS SPE confocal laser scanning fluorescence microscope 

(Leica DMRBE, Mannheim, Germany) or a Zeiss Axiovert microscope linked up to an 800 

Airyscan confocal system. Images were acquired under similar conditions and magnifications 

and were processed with ImageJ software, version 1.43 (http://rsbweb.nih.gov/ij/) and Adobe 

Photoshop. 
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2.4 Protein interactions 

HeLa cells selected to stably express Cx31WT-GFP (HeLa31-GFP cells) were transfected with either 

Cx31WT or Cx31G45E tagged to myc-myc-6xHis. The expression vector eGFP-N1 and a control myc-

tagged expression vector were transfected as a positive control for the Western blots.  Transfected 

cells were harvested in NP40 lysis buffer (150mM NaCl, 250mM Tris-HCl (pH 7.3) and 1% (v/v) NP40). 

To 50µl His Mag Sepharose Ni beads (GE Healthcare Life Sciences, Diegem, Belgium) 500µg total 

protein was added. The bead and protein mix was incubated at 4°C overnight with agitation. Non-

bound protein was removed by washing (250 mM NaCl, 250 mM Tris-HCl, 5 mM Imidazol, 0.1 % (v/v) 

NP40), followed by elution of bound protein in elution buffer (500 mM NaCl, 250 mM Tris-HCl, 500 

mM Imidazol and 0.1% (v/v) NP40).   

HeLa43 cells were also transfected with either Cx31WT or Cx31G45E tagged to GFP and were 

harvested in RIPA buffer (125 mM NaCl, 5 mM EDTA, 1% (w/v) Sodium Deoxycholate and 0.5% (v/v) 

Triton X-100). Twenty-five l of sheep anti-rabbit IgG Dynabeads (Thermofisher scientific, UK), 

previously incubated with polyclonal rabbit - GFP antibody (1:100, Abcam, UK), was then added to 

500 μg of total protein and incubated at 4°C overnight with agitation. The beads were extensively 

washed to remove any non-specifically bound proteins and interacting proteins finally eluted in 5x 

Laemmli buffer following manufactures instructions. 

 

2.5 Western blotting 

Protein (30 g) was subjected to SDS-PAGE, and Western blot analysis was performed according to 

standard procedures and blots were probed with appropriate antibodies (please see supplementary 

information).   

 

2.6 Quantitative Reverse-transcriptase PCR (qRT-PCR) 

Total RNA was isolated from transfected HeLa cells using ISOLATE II RNA Mini Kit according to 

manufacturers’ instructions (Bioline) and cDNA synthesised with the M-MLV reverse transcription kit 

(Promega, Southhampton, UK). Primers against CHOP, GADD34 and the reference gene GAPDH were 

used in Taqman PCR reactions (Primer design).  The reaction was performed in a Applied Biosystems 

ViiATM7 Real time PCR system under the following cycling conditions: 95°C for 15 min, followed by 40 

cycles of 95°C for 15 s and 60°C for 30 s. Gene expression levels were obtained from the value of 
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threshold cycle (Ct) for each specific gene and normalised against the Ct of GAPDH (∆∆CT method) 

[34]. 

 

2.7 Propidium Iodide (PI) uptake assays and FACS analysis  

Transfected cells were pre-treated with 18GA as required prior to trypsinisation and resuspension 

in PBS for analysis using a BD FACSCantoII. For each population 20,000 events were gated. To ensure 

only transfected (GFP expressing) cells were counted, cells were gated to FITC using a 488nm laser. 

Fluorescence was detected using a 530/30 fluorochrome set at 400V. Forward and side scatter were 

detected at 340V and 450V respectively. For PI uptake assays the cells were prepared as above then 

incubated with 40µg/ml PI for 1h, on ice, prior to analysis. PI was detected using a 575/26 

fluorochrome set at 300V, in the 488nM gated cells. A control necrotic cell population was prepared 

by freeze-thawing cells three times prior to analysis. Analysis was carried out using Flowing Software 

(http://www.flowingsoftware.com,  v2.5.1). 

 

2.8 Statistical Analysis 

Experiments were performed in triplicate and compiled using GraphPad Prism6 software. Results are 

expressed as mean ± S.E.M and statistical analysis performed using unpaired t-test, and Dunnett’s 

multiple comparison test as appropriate. ** P<0.05; ***P<0.001. 

 

RESULTS 

3.1 Expression of the mutation Cx31G45E causes a unique cellular morphology in vitro and impacts 

intracellular components 

Cx31WT-GFP trafficked to the plasma membrane and assembled into typical gap junction plaque-like 

structures in HeLa Ohio cells (Figure 1A). In contrast, Cx31G45E-GFP accumulated within the 

cytoplasm in pronounced vacuole-like structures (Figure 1B). Co-staining with an antibody against 

SERCA2b (sarcoplasmic reticulum calcium ATPase) showed a diffuse ER distribution in all non-

transfected cells and in cells transfected to express Cx31WT-GFP (Figure 1A and B and 

supplementary Figure 1). By contrast, in Cx31G45E-GFP expressing HeLa cells, SERCA2b co-localised 

with the mutant protein suggesting that the vacuoles are formed from the ER (Figure 1B). The 

microtubule network (Figure 1D) was disrupted in cells expressing Cx31G45E, with evidence of 
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microtubule collapse and bundling in the periphery of the cell in contrast to the stable microtubule 

network in Cx31WT-GFP cells (Figure 1C and 1D (red cells only)). However, the nuclear pore complex 

(Figure 1E and F) and nuclear envelope (Supplementary Figure 2U-X and Y-BB) were not affected by 

expression of Cx31G45E. Other intracellular organelles were also disrupted including the ERGIC, 

Golgi apparatus and proteasomes, all key waystations in the Cx life cycle (Supplementary Figure 2E-

T).  

To determine whether the observed Cx31G45E phenotype was mutation- or residue- specific, a 

number of different mutations were introduced to residue 45 (summarised in Table 1, 

supplementary data). Glycine was either deleted (delG45, Supplementary Figure 3C), replaced with 

alanine (G45A, Supplementary Figure 3D), lysine (G45K, Supplementary Figure 3E), glutamine (G45Q, 

Supplementary Figure 3F), serine (G45S, Supplementary Figure 3G), or tryptophan (G45W, 

Supplementary Figure 3H). Each mutation caused the same morphological change as observed in 

cells expressing Cx31G45E; however, in the case of G45A and G45K the effect was less pronounced 

and clear gap junction plaques were visible.  

 

3.2 Cx31G45E impacts on the spatial localisation of Cx43 and is a dominant mutation 

Cx31 mutations associated with EKV are reported to be dominant-negative. We assessed the impact 

of the mutant Cx31 protein on the intracellular localisation of wild-type connexins expressed in the 

epidermis. Co-transfection of HeLa cells with Cx31G45E-GFP and Cx31WT-mCherry (Figure 2A) and 

Cx30.3 (Figure 2B) resulted in co-localisation of the wild type protein and Cx31G45E in gap junction-

like plaque structures, however, the wild-type protein was also held in vesicular structures within 

the cytoplasm (Figure 2A and B).  The impact of Cx31G45E on the spatial localisation of Cx26 and 

Cx43 was also assessed in HeLa cells stably expressing Cx43 or Cx26. Wild-type Cx31 co-localised at 

the plasma membrane in gap junction plaques with both Cx43 and Cx26 (Supplementary Figure 4A 

and B). In HeLa26 cells transfected with Cx31G45E the mutant protein still accumulated in vacuoles 

and perinuclear regions, however punctate staining of Cx26 at the plasma membrane was evident 

(Figure 2C). By contrast, in HeLa43 cells Cx43 co-localised extensively with the Cx31G45E in the 

vacuolated ER, with limited localisation at the plasma membrane (Figure 2D). This coincided with the 

collapse of the microtubule network in Cx31G45E expressing cells. Cx31G45E produced a similar 

phenotype in keratinocytes where it was trapped in perinuclear regions and in vacuole-like 

structures and co-localised with Cx43, furthermore, the localisation of Cx43 at the plasma 

membrane was markedly reduced. (Figure 2E and F). Wild-type Cx31GFP co-localised extensively 
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with endogenously expressed Cx43, both in intracellular stores, typically around the ERGIC region of 

the cell and in gap junction plaques. Thus the wild-type proteins did not rescue the accumulation of 

Cx31G45E in vesicular structures within the cytoplasm, and there was reduced formation of GJ 

plaques by the wild-type proteins, suggesting that Cx31G45E has a dominant effect. This was most 

evident for Cx43. 

 

3.3 Formation of heteromeric Connexons 

To confirm that the observed co-localisation of Cx31G45E with wild-type Cx31 and Cx43 represented 

protein-protein interactions, nickel pull-down and immunoprecipitation assays were performed. 

HeLa cells transfected to express Cx31WT- and Cx31G45E- GFP-tagged proteins expressed a protein 

of 57kD, while myc-myc-6xHis-tagged proteins were ~33kDa (Figure 3A, con+31myc, 

con+GFP+31myc and H31-GFP input lanes). Nickel pull-down assays determined that Cx31WT-GFP 

interacted with Cx31WT-myc-myc-6xHis, as well as with Cx31G45E-myc-myc-6xHis (Figure 3A, H31-

GFP +31-myc and H31-GFP + G45E-myc lanes respectively). Thus Cx31G45E forms channels with 

Cx31WT. 

To further probe Cx31 interactions with epidermal connexins we also performed 

immunoprecipitation assays to study the interaction of Cx31 and Cx31G45E with Cx43. These 

experiments were performed in HeLa cells stably expressing Cx43 (Figure 3B). The IgG beads were 

coated with a GFP antibody enabling co-immunoprecipitation with proteins associating with the GFP 

tagged connexin. Western blot analysis of the co-IP assays detected eGFP (28kD) from control HeLa 

cells transfected to express eGFP. In HeLa43 cells transfected to express the Cx31-GFP constructs a 

band of ~57kD, representative of the Cx31-GFP protein was detected (Figure 3 B, IP: GFP). The blot 

was also probed for Cx43. In the case of the HeLa cells transfected to express eGFP no Cx43 was 

detected. By contrast, for HeLa43 cells transfected with wild-type or mutant Cx31, Cx43 co-

immunoprecipitated with the Cx31 constructs (Figure 3B, IP: Cx43). These results indicate that Cx31 

and Cx31- G45E can co-oligomerise with Cx43.  

 

3.4 Cx31G45E expression is associated with necrotic cell death but does not induce ER stress  

Previous reports suggest Cx31-EKV associated mutations induce ER stress [27, 29, 30]. Real–time RT-

PCR determined that there was no significant increase in the expression of CHOP/BiP or GADD34, 

genes associated with UPR and ER stress in HeLa cells expressing either pEGFP-N1, Cx31WT-GFP or 
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Cx31G45E-GFP (Figure 4A). By contrast, thapsigargin, a known ER stress inducer, significantly 

induced expression of CHOP by 4.7 ± 0.8 fold and GADD34 by 7.2 ± 0.9 fold (P<0.001). Western blot 

analysis revealed no change in the level of expression of BiP in HeLa cells (Figure 4B) and in HaCaT 

cells no changes in the level of BiP or GADD34 were observed (Figure 4C).  These observations 

suggest that expression of Cx31G45E-GFP does not induce ER stress, and other factors must be 

driving the observed ER changes and the localisation of the mutant protein.  

Finally, to determine if the gross changes occurring in cellular integrity in cells expressing Cx31G45E 

were associated with apoptosis or necrosis, FACS analysis and propidium iodide (PI) uptake assays in 

the presence or absence of 18GA, a connexin channel blocker, were performed (Figure 4D and 

Supplementary Figure 5). Cells were subjected to FACS analysis and under non-transfected control 

conditions, ~4% of the population exhibited a necrotic profile compared to ~70% of cells from the 

induced necrotic population (Figure 4D and supplementary Figure 5). Using the FACS parameters 

established in control conditions, ~6% of cells transfected with pEGFP-N1 and ~4% of cells 

transfected to express Cx31WT-GFP were detected in the necrotic quadrant (Figure 4E). By contrast, 

~25% of cells expressing Cx31-G45E-GFP were necrotic and the effect was not significantly reduced 

by co-treatment with 18GA to block hemichannel activity (Figure 4E). Thus the Cx31G45E 

expressing cells showed a statistically significant (p<0.05) necrotic profile compared to cells 

expressing wildtype Cx31. Integrity of the cell membrane was also examined via PI uptake assays. 

Under non-transfected conditions, cells subject to necrosis exhibited a PI(bright) peak that was absent 

in the control population. In gated, GFP expressing cells a PI(bright) peak was also observed in cells 

expressing Cx31G45E-GFP, but was absent from cells expressing Cx31WT-GFP or pEGFP-N1. This 

PI(bright) peak was marginally, but not significantly reduced in the Cx31G45E-GFP populations treated 

with 18GA. This suggests that the observed permeability to PI is not due to ‘leaky connexin 

channels’ and that the Cx31G45E cells have a compromised membrane (Supplementary Figure 6). 

 

3. Discussion  

The present work details the importance of the amino acid position G45 in Cx31 in maintaining cell 

function and suggests that altered interaction with Cx43 is associated with the pathology of EKV-P. 

Cx mutations associated with skin disease can alter the connexin life cycle in two primary ways. 

Firstly, mutations modify trafficking to the plasma membrane. For example, the EKV-P associated 

mutations G12R, G12D and F137L cause the connexins to be sequestered within the cytoplasm, with 

loss of channel function [35-37]. Secondly, mutant proteins target the plasma membrane but form 

‘leaky hemichannels’ commonly considered as gain-of-function mutations. This includes a variety of 
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Cx26 mutations, including Cx26G45E, associated with the inflammatory skin disease Keratitis 

Ichthyosis Deafness syndrome (KID) [38, 39].   

Mutations introduced to Cx31G45 cause a unique phenotype, with the mutant protein sequestered 

within the ER in vesicular structures. All the EKV mutations reported to date cause abnormal Cx31 

trafficking with the mutant proteins accumulating in intracellular stores, particularly the ER [27-29, 

36, 38-40] (summarised in supplementary Table 1). This is the first report of extensive disruption of 

the ER and microtubule network subsequent to a Cx31 mutation. A number of trafficking mutations 

are also associated with Cx26, with the mutant protein trapped in the ER/Golgi environs, e.g. D66H 

associated with Vohwinkel syndrome and H73R associated with palmoplantar keratoderma [10, 12]. 

A recent report suggests that the H73R mutation may interact with Cx43 channels, inducing changes 

in the functional status of Cx43 [41]. Other mutations in Cx26, primarily associated with the amino 

terminal domain and the first part of first extracellular loop, are linked with KID syndrome. Recent 

studies indicate that a variety of Cx26 mutations have trans-dominant effects on other epidermal 

connexins, including Cx43, inducing altered heteromeric channel function [41-43].  

Connexin 31 is expressed in the skin with a similar profile to that of Cx43 [44]. Previous studies have 

suggested that Cx31 and Cx43 do not form functional heteromeric channels [45].  However, an 

ability of these channels to functionally interact has been hinted at in a number of studies. In the 

skin of Cx43 deficient mice, Cx31 was significantly down-regulated and associated with enhanced 

rates of wound closure [44]. A EKV-mouse model for the mutation Cx31F137L revealed that 

homozygous mice were non-viable, but that the heterozygous mice had similar wound healing 

capacities to the Cx43 conditional knockout mice, suggesting functional interactions between these 

two proteins [23]. In the present work, we observed that Cx43 and Cx31 strongly co-localised at 

regions of cell to cell contact in both HeLa43 cells and HaCaT cells. Immunoprecipitation assays 

confirmed the interaction of these two proteins. In both HeLa43 and HaCaT cells expressing the 

Cx31G45E mutation Cx43 co-localised with the mutation, being trapped inside the cell in the 

associated G45E-like vacuoles, suggesting a trans-dominant effect. Rapid remodelling and turnover 

of Cx43/Cx31 proteins and differing levels of heteromeric interaction could account for altered 

cellular signalling and the transient keratosis and erythema associated with EKV, although such 

speculations require further analysis. 

The effect of Cx31G45E expression in vitro was very different to that reported for Cx26G45E and 

other non-trafficking mutations in Cx31 and Cx26, with pronounced disruption of the ER. The amino 

acid G45, located on the first extracellular loop of connexins, is highly conserved among all Cx 

subtypes.  Structural analysis for Cx26 revealed the importance of G45 in lining the extracellular 
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funnel, suggesting that this amino acid is critical for channel function [46]. Zhang et al. examined the 

G45E mutation in Cxs30, 32 and 43 and showed that cell death occurred within 24 h of transfection, 

which could be rescued by incubating cells in >5 mM Ca2+ [47], suggesting that G45 is a common 

calcium sensing centre for connexins. Each of the amino acid substitutions in the present study 

introduced subtle changes to properties at this position. While G45E introduces an acidic residue, 

G45K and G45S mutations result in a change in charge to positive and neutral amino acids 

respectively.  The G45K mutation induced a negative to positive charge while introduction of 

glutamine results in a change in the size of the amino acid and introducing tryptophan (G45W) 

causes a switch from a hydrophilic to a hydrophobic amino acid. All these amino acid changes, 

including deletion of G45, deregulated Cx31 transport. By contrast, Zhang et al. showed that a G45E 

mutation in Cxs43 and 32 had no effect on protein trafficking. Although the mutation Cx26G45E is 

associated with a lethal form of KID, little alteration in spatial localisation of the protein has been 

reported, however leaky hemichannels form that are extremely sensitive to changes in calcium 

levels [48, 49]. Thus our data clearly illustrates the importance of the glycine at position 45 in 

maintaining Cx31 structure.  

Connexin trafficking relies on an intact microtubule network, with plus end tracking motor proteins 

and partners such as consortin required for efficient membrane delivery [50, 51]. We observed a 

profound re-localisation of Cx43 with Cx31G45E, suggesting a trans-dominant effect on Cx43 

trafficking. It is well established that Cx43 trafficking is highly dependent on an intact microtubular 

network and further studies are now required to determine how heteromeric mutant channels may 

interact with transport networks [50, 51] . 

ER stress and an unfolded protein response (UPR) have been reported in several EKV-P mutations 

and are key events in inducing necrotic cell death [27-29, 36, 40]. Although our studies showed no 

evidence of ER stress, FACS analysis and PI uptake assays determined that the mutation induced 

necrotic cell death, an endpoint also observed for the other EKV-P mutations and highly likely linked 

to altered keratinization [52]. The lack of ER stress could be attributed to a breakdown of the 

microtubule network, required for maintaining ER structure [53], suggesting this may be an early 

event following expression of the mutant protein. 

Our observations suggest that diverse, mutation-specific mechanisms lead to necrotic cell death 

associated with the EKV-P phenotype. In cells expressing the mutation Cx31R42P, induced ER stress 

promoted production of reactive oxygen species (ROS), which stimulated hemichannel activity and 

promoted cell death [27]. Hemichannel blockers or high extracellular calcium decreased the level of 

cell death. Interestingly, the cell death phenotype was promoted when the cells were grown at low 
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temperature (26oC). Tang and colleagues [28] reported that the trafficking deficiency and loss of 

function of mutations Cx31-G12D, R42P and F137L was recovered by culturing cells at 27oC. These 

authors also reported that BiP/Hsp70 and cFos-JunB pathways are central in EKV. A further Cx31 

mutation V174M, associated with non-syndromic deafness but with no skin pathology reported, 

accumulated in lysosomes and the ER [54]. This mutation also formed non-functional channels and 

had a trans-dominant effect on the trafficking of Cx26 but did not alter the ability of WTCx31 to 

assemble at the plasma membrane.   

In conclusion, four clinical reports indicate that G45E is associated with EKV-P. To our knowledge, 

our report is the first to detail the impact of this mutation on cellular integrity and provides evidence 

that disease progression is associated with necrotic cell death. We also show that the mutation has a 

trans-dominant effect on the trafficking of Cx43 which, together with recent data for Cx26 [42, 43], 

suggest altered interaction with Cx43 may be indicative of severe Cx-related skin disorders. Although 

the EKV-P phenotype associated with this mutation is similar to other EKV-P mutations reported it is 

clear that the underlying mechanism attributed to the mutation is different, suggesting variable 

mechanisms of triggering the disease state and warrants further investigation.  
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