A microscopic Hamiltonian theory of the FQHE developed by Shankar and the
present author based on the fermionic Chern-Simons approach has recently been
quite successful in calculating gaps and finite tempertature properties in
Fractional Quantum Hall states. Initially proposed as a small-q theory, it
was subsequently extended by Shankar to form an algebraically consistent theory
for all q in the lowest Landau level. Such a theory is amenable to a
conserving approximation in which the constraints have vanishing correlators
and decouple from physical response functions. Properties of the incompressible
fractions are explored in this conserving approximation, including the
magnetoexciton dispersions and the evolution of the small-q structure factor
as \nu\to\half. Finally, a formalism capable of dealing with a nonuniform
ground state charge density is developed and used to show how the correct
fractional value of the quasiparticle charge emerges from the theory.Comment: 15 pages, 2 eps figure