Abstract

A microscopic Hamiltonian theory of the FQHE developed by Shankar and the present author based on the fermionic Chern-Simons approach has recently been quite successful in calculating gaps and finite tempertature properties in Fractional Quantum Hall states. Initially proposed as a small-qq theory, it was subsequently extended by Shankar to form an algebraically consistent theory for all qq in the lowest Landau level. Such a theory is amenable to a conserving approximation in which the constraints have vanishing correlators and decouple from physical response functions. Properties of the incompressible fractions are explored in this conserving approximation, including the magnetoexciton dispersions and the evolution of the small-qq structure factor as \nu\to\half. Finally, a formalism capable of dealing with a nonuniform ground state charge density is developed and used to show how the correct fractional value of the quasiparticle charge emerges from the theory.Comment: 15 pages, 2 eps figure

    Similar works

    Full text

    thumbnail-image

    Available Versions