193 research outputs found

    Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle

    Get PDF
    Biogeophysical (BGP) and biogeochemical (BGC) effects of land-use and land cover change (LULCC) are separated at the global and regional scales in new interactive CO2 simulations for the 21st century. Results from four earth system models (ESMs) are analyzed for the future RCP8.5 scenario from simulations with and without land-use and land cover change (LULCC), contributing to the Land-Use and Climate, IDentification of robust impacts (LUCID) project. Over the period 2006–2100, LULCC causes the atmospheric CO2 concentration to increase by 12, 22, and 66 ppm in CanESM2, MIROC-ESM, and MPI-ESM-LR, respectively. Statistically significant changes in global near-surface temperature are found in three models with a BGC-induced global mean annual warming between 0.07 and 0.23 K. BGP-induced responses are simulated by three models in areas of intense LULCC of varying sign and magnitude (between −0.47 and 0.10 K). Modifications of the land carbon pool by LULCC are disentangled in accordance with processes that can lead to increases and decreases in this carbon pool. Global land carbon losses due to LULCC are simulated by all models: 218, 57, 35 and 34 Gt C by MPI-ESM-LR, MIROC-ESM, IPSL-CM5A-LR and CanESM2, respectively. On the contrary, the CO2-fertilization effect caused by elevated atmospheric CO2 concentrations due to LULCC leads to a land carbon gain of 39 Gt C in MPI-ESM-LR and is almost negligible in the other models. A substantial part of the spread in models' responses to LULCC is attributed to the differences in implementation of LULCC (e.g., whether pastures or crops are simulated explicitly) and the simulation of specific processes. Simple idealized experiments with clear protocols for implementing LULCC in ESMs are needed to increase the understanding of model responses and the statistical significance of results, especially when analyzing the regional-scale impacts of LULCC

    Exploring the concept of pain of Australian children with and without pain: Qualitative study

    Full text link
    © 2019 Author(s). Objective A person's concept of pain can be defined as how they understand what pain actually is, what function it serves and what biological processes are thought to underpin it. This study aimed to explore the concept of pain in children with and without persistent pain. Design In-depth, face-to-face interviews with drawing tasks were conducted with 16 children (aged 8-12 years) in New South Wales, Australia. Thematic analysis was used to analyse and synthesise the data. Setting Children with persistent pain were identified from a pain clinic waiting list in Australia, and children without pain were identified through advertising flyers and email bulletins at a university and hospital. Participants Eight children had persistent pain and eight children were pain free. Results Four themes emerged from the data: â € my pain-related knowledge', â € pain in the world around me', â € pain in me' and â € communicating my concept of pain'. A conceptual framework of the potential interactions between the themes resulting from the analysis is proposed. The concept of pain of Australian children aged 8-12 years varied depending on their knowledge, experiences and literacy levels. For example, when undertaking a drawing task, children with persistent pain tended to draw emotional elements to describe pain, whereas children who were pain free did not. Conclusions Gaining an in-depth understanding of a child's previous pain-related experiences and knowledge is important to facilitate clear and meaningful pain science education. The use of age-appropriate language, in combination with appropriate assessment and education tasks such as drawing and discussing vignettes, allowed children to communicate their individual concept of pain

    Effect of anthropogenic land-use and land cover changes on climate and land carbon storage in CMIP5 projections for the 21st century

    Get PDF
    This is the final version of the article. Available from the American Meteorological Society via the DOI in this record.The effects of land-use changes on climate are assessed using specified-concentration simulations complementary to the representative concentration pathway 2.6 (RCP2.6) and RCP8.5 scenarios performed for phase 5 of the Coupled Model Intercomparison Project (CMIP5). This analysis focuses on differences in climate and land–atmosphere fluxes between the ensemble averages of simulations with and without land-use changes by the end of the twenty-first century. Even though common land-use scenarios are used, the areas of crops and pastures are specific for each Earth system model (ESM). This is due to different interpretations of land-use classes. The analysis reveals that fossil fuel forcing dominates land-use forcing. In addition, the effects of land-use changes are globally not significant, whereas they are significant for regions with land-use changes exceeding 10%. For these regions, three out of six participating models—the Second Generation Canadian Earth System Model (CanESM2); Hadley Centre Global Environmental Model, version 2 (Earth System) (HadGEM2-ES); and Model for Interdisciplinary Research on Climate, Earth System Model (MIROC-ESM)—reveal statistically significant changes in mean annual surface air temperature. In addition, changes in land surface albedo, available energy, and latent heat fluxes are small but significant for most ESMs in regions affected by land-use changes. These climatic effects are relatively small, as land-use changes in the RCP2.6 and RCP8.5 scenarios are small in magnitude and mainly limited to tropical and subtropical regions. The relative importance of the climatic effects of land-use changes is higher for the RCP2.6 scenario, which considers an expansion of biofuel croplands as a climate mitigation option. The underlying similarity among all models is the loss in global land carbon storage due to land-use changes.We acknowledge the World Climate Research Programme Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. We thank Karl Taylor and Charles Doutriaux for help with setting up the CMOR tables for the LUCID–CMIP5 experiments. We appreciate a support by the staff of the German Climate Computing Center (DKRZ), in particular by Stephanie Legutke and Estanislao Gonzalez, in performing the LUCID–CMIP5 simulations and in making the model results available via DKRZ ESG gateway. We thank Andy Pitman and an anonymous reviewer for providing constructive and helpful comments on the manuscript. CDJ was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). EK was supported by the Environmental Research and Technology Development Fund (S-5, S-10) of the Ministry of the Environment, Japan. PF and FP were supported by the EU-FP7 COMBINE project (Grant 226520)

    Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study

    Get PDF
    Seven climate models were used to explore the biogeophysical impacts of human-induced land cover change (LCC) at regional and global scales. The imposed LCC led to statistically significant decreases in the northern hemisphere summer latent heat flux in three models, and increases in three models. Five models simulated statistically significant cooling in summer in near-surface temperature over regions of LCC and one simulated warming. There were few significant changes in precipitation. Our results show no common remote impacts of LCC. The lack of consistency among the seven models was due to: 1) the implementation of LCC despite agreed maps of agricultural land, 2) the representation of crop phenology, 3) the parameterisation of albedo, and 4) the representation of evapotranspiration for different land cover types. This study highlights a dilemma: LCC is regionally significant, but it is not feasible to impose a common LCC across multiple models for the next IPCC assessment

    Functional cerebral changes in multiple sclerosis patients during an autobiographical memory test.

    Get PDF
    Our aim was to investigate the functional underpinnings of autobiographical memory (AM) impairment in multiple sclerosis (MS) patients. To that end, 18 patients and 18 controls underwent the autobiographical interview (AI). Subsequently, the 36 participants underwent a functional magnetic resonance imaging (fMRI) session designed to assess the construction and elaboration of AMs. A categorical control task was also presented. Patients were trained in the fMRI procedure to optimise the procedural aspects accompanying the task itself. Although the patients obtained significantly poorer AI scores (p < .001), their performance on the easier AM fMRI task was efficiently carried out, allowing relevant comparisons with healthy controls. Relatively to healthy controls, the patients showed increased and bilateral cerebral activations (p < .005) during the construction and elaboration phases. The prefrontal, temporal and posterior cerebral region activations were located within the core network sustaining AM, with the bilateral prefrontal region being centrally involved. The parametric neural responses to the difficulty of access and amount of details of memories were also significantly different for the two groups, with the right hippocampal region showing a particularly increased recruitment (p < .005). The findings suggested the presence of functional cerebral changes during AM performance and supported the presence of AM retrieval deficit in MS patients.journal articleresearch support, non-u.s. gov't20152014 09 22importe

    Front Aging Neurosci

    Get PDF
    We studied the influence of emotions on autobiographical memory (AbM) in patients with Alzheimer's disease (AD), characteristically triggering atrophy in the hippocampus and the amygdala, two crucial structures sustaining memory and emotional processing. Our first aim was to analyze the influence of emotion on AbM in AD patients, on both the proportion and the specificity of emotional memories. Additionally, we sought to determine the relationship of emotional AbM to amygdalar-hippocampal volumes. Eighteen prodromal to mild AD patients and 18 age-matched healthy controls were included. We obtained 30 autobiographical memories per participant using the modified Crovitz test (MCT). Analyses were performed on global scores, rates and specificity scores of the emotional vs. neutral categories of memories. Amygdalar-hippocampal volumes were extracted from 3D T1-weighted MRI scans and tested for correlations with behavioral data. Overall, AD patients displayed a deficit in emotional AbMs as they elicited less emotional memories than the controls, however, the specificity of those memories was preserved. The deficit likely implied retrieval or storage as it was extended in time and without reminiscence bump effect. Global scores and rates of emotional memories, but not the specificity scores, were correlated to right amygdalar and hippocampal volumes, indicating that atrophy in these structures has a central role in the deficit observed. Conversely, emotional memories were more specific than neutral memories in both groups, reflecting an enhancement effect of emotion that could be supported by other brain regions that are spared during the early stages of the disease
    • …
    corecore