733 research outputs found

    Novel compound shows in vivo anthelmintic activity in gerbils and sheep infected by Haemonchus contortus

    Get PDF
    8 páginas, 2 figuras, 2 tablas.The control of gastrointestinal nematodes in livestock is becoming increasingly difficult due to the limited number of available drugs and the rapid development of anthelmintic resistance. Therefore, it is imperative to develop new anthelmintics that are effective against nematodes. Under this context, we tested the potential toxicity of three compounds in mice and their potential anthelmintic efficacy in Mongolian gerbils infected with Haemonchus contortus. The compounds were selected from previous in vitro experiments: two diamine (AAD-1 and AAD-2) and one benzimidazole (2aBZ) derivatives. 2aBZ was also selected to test its efficacy in sheep. In Mongolian gerbils, the benzimidazole reduced the percentage of pre-adults present in the stomach of gerbils by 95% at a dose of 200 mg/kg. In sheep, there was a 99% reduction in the number of eggs shed in faeces after 7 days at a dose of 120 mg/kg and a 95% reduction in the number of worm adults present in the abomasum. In conclusion, 2aBZ could be considered a promising candidate for the treatment of helminth infections in small ruminants. © 2022, The Author(s).Financial support came from MINECO: RETOS (AGL2016-79813-C2-1R/2R) and MICINN/AEI (PID2020- 119035RB-100). EVG was funded by FPU17/00627, FPU17/05346; VCGA, MAB, MCP and LGP are recipients of Junta de Castilla y León (JCyL) (LE082-18, LE051-18, LE135-19, LE096-20, respectively) and MMV by the Spanish “Ramon y Cajal” Programme (Ministerio de Economía y competitividad; MMV, RYC-2015-18368).Peer reviewe

    A Multiple-Choice Maze-like Spatial Navigation Task for Humans Implemented in a Real-Space, Multipurpose Circular Arena.

    Get PDF
    Spatial navigation is a key aspect of human behavior and it is still not completely understood. A number of experimental approaches exist, although most of the published data in the last decades have relied on virtual maze on-screen simulation or not-completely freely moving 3D devices. Some interesting recent developments, such as circular mazes, have contributed to analyze critical aspects of freely moving human spatial navigation in real space, although dedicated protocols only allow for simple approaches. Here, we have developed both specifically designed and home-assembled hardware equipment, and a customized protocol for spatial navigation evaluation in freely moving humans in a real space circular arena. The spatial navigation protocol poses an imitation of a real-space multiple-choice path maze with cul-de-sac and instances of non-linear movement. We have compared the results of this system to those of a number of validated, both virtual and real, spatial navigation tests in a group of participants. The system composed by hardware, the test protocol, and dedicated measure analysis designed in our laboratory allows us to evaluate human spatial navigation in a complex maze with a small and portable structure, yielding a highly flexible, adaptable, and versatile access to information about the subjects’ spatial navigation abilities.P.M. was funded by a predoctoral fellowship (FPI) grant, PRE2020/093032, from the Ministerio de Ciencia e Innovación; E.C. was funded by a predoctoral fellowship (FPI) grant, BES-2017/080415, from the Ministerio de Economía y Competitividad; P.T. was funded by a predoctoral fellowship (FPU) grant, 18/00069, from the Ministerio de Universidades. This research received no other external specific funding

    QUIJOTE-CMB experiment: a technical overview

    Get PDF
    The QUIJOTE-CMB experiment (Q-U-I JOint TEnerife CMB experiment) is an ambitious project to obtain polarization measurements of the sky microwave emission in the 10 to 47 GHz range. With this aim, a pair of 2,5m telescopes and three instruments are being sited at the Teide Observatory, in Tenerife (Canary Islands, Spain). The first telescope and the first instrument (the MFI: Multi Frequency Instrument) are both already operating in the band from 10 to 20 GHz, since November 2012. The second telescope and the second instrument (TGI: Thirty GHz instrument) is planned to be in commissioning by the end of summer 2014, covering the range of 26 to 36 GHz. After that, a third instrument named FGI (Forty GHz instrument) will be designed and manufactured to complete the sky survey in the frequency range from 37 to 47 GHz. In this paper we present an overview of the whole project current status, from the technical point of view

    The QUIJOTE experiment: project overview and first results

    Full text link
    QUIJOTE (Q-U-I JOint TEnerife) is a new polarimeter aimed to characterize the polarization of the Cosmic Microwave Background and other Galactic and extragalactic signals at medium and large angular scales in the frequency range 10-40 GHz. The multi-frequency (10-20~GHz) instrument, mounted on the first QUIJOTE telescope, saw first light on November 2012 from the Teide Observatory (2400~m a.s.l). During 2014 the second telescope has been installed at this observatory. A second instrument at 30~GHz will be ready for commissioning at this telescope during summer 2015, and a third additional instrument at 40~GHz is now being developed. These instruments will have nominal sensitivities to detect the B-mode polarization due to the primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r=0.05.Comment: To appear in "Highlights of Spanish Astrophysics VIII", Proceedings of the XI Scientific Meeting of the Spanish Astronomical Society, Teruel, Spain (2014

    The QUIJOTE TGI

    Get PDF
    The QUIJOTE TGI instrument is currently being assembled and tested at the IAC in Spain. The TGI is a 31 pixel 26-36 GHz polarimeter array designed to be mounted at the focus of the second QUIJOTE telescope. This follows a first telescope and multi-frequency instrument that have now been observing almost 2 years. The polarimeter design is based on the QUIET polarimeter scheme but with the addition of an extra 90º phase switch which allows for quasiinstantaneous complete QUI measurements through each detector. The advantage of this is a reduction in the systematics associated with differencing two independent radiometer channels. The polarimeters are split into a cold front end and a warm back end. The back end is a highly integrated design by engineers at DICOM. It is also sufficiently modular for testing purposes. In this presentation the high quality wide band components used in the optical design (also designed in DICOM) are presented as well as the novel cryogenic modular design. Each polarimeter chain is accessible individually and can be removed from the cryostat and replaced without having to move the remaining pixels. The optical components work over the complete Ka band showing excellent performance. Results from the sub unit measurements are presented and also a description of the novel calibration technique that allows for bandpass measurement and polar alignment. Terrestrial Calibration for this instrument is very important and will be carried out at three points in the commissioning phase: in the laboratory, at the telescope site and finally a reduce set of calibrations will be carried out on the telescope before measurements of extraterrestrial sources begin. The telescope pointing model is known to be more precise than the expected calibration precision so no further significant error will be added through the telescope optics. The integrated back-end components are presented showing the overall arrangement for mounting on the cryostat. Many of the microwave circuits are in-house designs with performances that go beyond commercially available products. Individual component performance is be presented showing for each of the sub modules

    QUIJOTE Experiment: status of telescopes and instrumentation

    Get PDF
    The QUIJOTE Experiment (Q-U-I JOint TEnerife) is a combined operation of two telescopes and three instruments working in the microwave band to measure the polarization of the Cosmic Microwave Background (CMB) from the northern hemisphere, at medium and large angular scales. The experiment is located at the Teide Observatory in Tenerife, one of the seven Canary Islands (Spain). The project is a consortium maintained by several institutions: the Instituto de Astrofísica de Canarias (IAC), the Instituto de Física de Cantabria (IFCA), the Communications Engineering Department (DICOM) at Universidad de Cantabria, and the Universities of Manchester and Cambridge. The consortium is led by the IAC

    Síndromes muy poco frecuentes.

    Get PDF
    Dismorfología, Citogenética y Clínica: Resultados de estudios sobre los datos del ECEMCAs in previous years, six new syndromes have been selected to be included in this section, aimed to make easier the recognition of syndromes with low-frequency by paediatricians and first health care physicians, particularly those of rural areas. In this Boletín, the following syndromes are included: Megalencephaly-Cutis Marmorata Telangiectatica Congenita syndrome, Van der Woude syndrome, Hay Wells syndrome, Zellweger syndrome, Jeune syndrome and Laurin-Sandrow syndrome. For each syndrome, the most important clinical characteristics, and the present knowledge on their causal factors and mechanisms involved are sumarized.N

    Associations between eating speed, diet quality, adiposity, and cardiometabolic risk factors

    Get PDF
    Objective: To assess the associations between eating speed, adiposity, cardiometabolic risk factors, and diet quality in a cohort of Spanish preschool-children. Study design: A cross-sectional study in 1371 preschool age children (49% girls; mean age, 4.8 ± 1.0 years) from the Childhood Obesity Risk Assessment Longitudinal Study (CORALS) cohort was conducted. After exclusions, 956 participants were included in the analyses. The eating speed was estimated by summing the total minutes used in each of the 3 main meals and then categorized into slow, moderate, or fast. Multiple linear and logistic regression models were fitted to assess the β-coefficient, or OR and 95% CI, between eating speed and body mass index, waist circumference, fat mass index (FMI), blood pressure, fasting plasma glucose, and lipid profile. Results: Compared with participants in the slow-eating category, those in the fast-eating category had a higher prevalence risk of overweight/obesity (OR, 2.9; 95% CI, 1.8-4.4; P < .01); larger waist circumference (β, 2.6 cm; 95% CI, 1.5-3.8 cm); and greater FMI (β, 0.3 kg/m2; 95% CI, 0.1-0.5 kg/m2), systolic blood pressure (β, 2.8 mmHg; 95% CI, 0.6-4.9 mmHg), and fasting plasma glucose levels (β, 2.7 mg/dL, 95% CI, 1.2-4.2 mg/dL) but lower adherence to the Mediterranean diet (β, −0.5 points; 95% CI, −0.9 to −0.1 points). Conclusions: Eating fast is associated with higher adiposity, certain cardiometabolic risk factors, and lower adherence to a Mediterranean diet. Further long-term and interventional studies are warranted to confirm these associations

    The QUIJOTE-CMB experiment: studying the polarisation of the galactic and cosmological microwave emissions

    Get PDF
    The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment will operate at the Teide Observatory with the aim of characterizing the polarisation of the CMB and other processes of Galactic and extragalactic emission in the frequency range of 10-40GHz and at large and medium angular scales. The first of the two QUIJOTE telescopes and the first multi-frequency (10-30GHz) instrument are already built and have been tested in the laboratory. QUIJOTE-CMB will be a valuable complement at low frequencies for the Planck mission, and will have the required sensitivity to detect a primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r = 0.05.The QUIJOTE-CMB experiment is being developed by the Instituto de Astrofisica de Canarias (IAC), the Instituto de Fisica de Cantabria (IFCA), and the Universities of Cantabria, Manchester and Cambridge. Partial financial support is provided by the Spanish Ministry of Economy and Competitiveness (MINECO) under the projects AYA2010-21766-C03 (01, 02 and 03), and also by the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation49)
    corecore