81 research outputs found

    Dissolved noble gases and stable isotopes as tracers of preferential fluid flow along faults in the Lower Rhine Embayment, Germany

    Get PDF
    Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low ÎŽ2H and ÎŽ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7 × 10−4 cm3 (STP) g–1 ± 2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ∌107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study’s geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying  that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids

    Business process management and supply chain collaboration: a critical comparison

    Get PDF
    The link between a firm and supply chain (SC) members has been recognised as one of the key issues for ensuring business success and achieving competitive advantage. Indeed, working across organisational boundaries is required to accomplish effective responses to customers’ needs. Our preliminary research confirmed that there are positive relationships between business process management (BPM), supply chain collaboration (SCC), collaborative advantage and organisational performance. This study is a step further and uses a multiple case design to illuminate the results and gain a greater understanding from extensive discussions about these relationships. By means of semi-structured interviews, the three main issues were identified as: (1) the link between BPM and organisational performance; (2) the link between BPM and SCC; and (3) the contextual factors and benefits achieved from working collaboratively with SC partners. The different scenarios of the link between BPM and SCC were developed in a taxonomy, and the case studies were used to illustrate the experience of intra- and inter-organisational practices in the developing economy of Thailand. The case studies’ results explain in depth that both BPM and SCC are important for improving organisational performance and competitiveness. BPM not only improves organisational performance directly, but also assists with collaborative activities that in turn help to improve internal capabilities. Additionally, the comparisons in issues relating to firm size, industry type, relationship closeness and relationship length were also included in this study

    Viscum album Exerts Anti-Inflammatory Effect by Selectively Inhibiting Cytokine-Induced Expression of Cyclooxygenase-2

    Get PDF
    Viscum album (VA) preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2) and prostaglandin E2 (PGE2) play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells) as a model. A549 cells were stimulated with IL-1ÎČ and treated with VA preparation (VA Qu Spez) for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1ÎČ-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2

    Isotopic and geochemical identification of main groundwater supply sources to an alluvial aquifer, the Allier River valley (France)

    No full text
    International audienceHydrodynamic, hydrochemical, and isotopic investigations were carried out on 18 points, including boreholes, piezometers, and surface waters, from February 2011 to August 2012, to assess groundwater quality in the unconfined shallow alluvial aquifer of the Allier River (one of the main tributary of the Loire River). The study area, located near the city of Clermont-Ferrand (France), plays an important socio-economic role as the alluvial aquifer is the major source of drinking water for about 100,000 inhabitants. The objective of the project aims at understanding the functioning of alluvial aquifers that occupy a pre-eminent position in the hydrogeologic landscape both for their economic role - production of drinking water and agricultural development - and for their ecological role. Moreover, this study also targets at determining the factors and processes controlling shallow groundwater quality and origin. The water circulates from the south, with a natural alimentation from the hills in the non-pumped part of the alluvial aquifer. In the pumping zone, this general behaviour is altered by the pumping that makes the water from the Allier River enter the system in a large proportion. Four end-members have been identified for the recharge of the alluvial groundwater: rainfall, Allier River, surrounding hills' aquifer and the southern non-pumped part of the alluvial system. Results indicate that, despite the global Ca-HCO3 water type of the groundwater, spatial variations of physico-chemical parameters do exist in the study area. Ionic concentrations increase from the Allier River towards east due either to the increase in the residence time or a mixing with groundwater coming from the aquifer's borders. Stable isotopes of the water molecule show the same results: boreholes close to the river bank are recharged by the Allier River (depleted values), while boreholes far from the river exhibit isotopic contents close to the values of hills' spring or to the southern part of the alluvial aquifer, both recharged by local precipitation. One borehole (B65) does not follow this scheme of functioning and presents values attesting of a probable sealing of the Allier River banks. Based on these results, the contribution of each end-member has been calculated and the functioning of the alluvial system determined

    Contaminant transfer and hydrodispersiveparameters in basaltic lava flows: artificial tracertest and implications for long-term management

    No full text
    The aim of this paper is to evaluate the vulnerabilityafter point source contamination and characterizewater circulations in volcanic flows located in theArgnat basin volcanic system (ChaĂźne des Puys, FrenchMassif Central) using a tracer test performed by injectinga iodide solution. The analysis of breakthrough curves allowedthe hydrodispersive characteristics of the massivelava flows to be determined. Large Peclet numbers indicateda dominant advective transport. The multimodal featureof breakthrough curves combined with high valuesof mean velocity and low longitudinal dispersion coefficientsindicated thatwater flows in an environment analogousto a fissure system, and only slightly interacts with alow porosity matrix (ne < 1%). Combining this informationwith lava flow stratigraphy provided by several drillingsallowed a conceptual scheme of potential contaminant behaviourto be designed. Although lava flows are vulnerableto point source pollution due to the rapid transfer of waterwithin fractures, the saturated scoriaceous layers locatedbetween massive rocks should suffice to strongly bufferthe transit of pollution through dilution and longer transittimes. This was consistent with the low recovery rate ofthe presented tracer test

    Contaminant transfer and hydrodispersive parameters in basaltic lava flows: artificial tracer test and implications for long-term management

    No full text
    International audienceThe aim of this paper is to evaluate the vulnerability after point source contamination and characterize water circulations in volcanic flows located in the Argnat basin volcanic system (Chaine des Puys, French Massif Central) using a tracer test performed by injecting a iodide solution. The analysis of breakthrough curves allowed the hydrodispersive characteristics of the massive lava flows to be determined. Large Peclet numbers indicated a dominant advective transport. The multimodal feature of breakthrough curves combined with high values of mean velocity and low longitudinal dispersion coefficients indicated thatwater flows in an environment analogous to a fissure system, and only slightly interacts with a low porosity matrix (n(e) < 1%). Combining this information with lava flow stratigraphy provided by several drillings allowed a conceptual scheme of potential contaminant behaviour to be designed. Although lava flows are vulnerable to point source pollution due to the rapid transfer of water within fractures, the saturated scoriaceous layers located between massive rocks should suffice to strongly buffer the transit of pollution through dilution and longer transit times. This was consistent with the low recovery rate of the presented tracer test
    • 

    corecore