350 research outputs found

    Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation

    Get PDF
    none9Tuber magnatum, an ascomycetous fungus and obligate ectomycorrhizal symbiont, forms hypogeous fruit bodies, commonly called Italian white truffles. The diversity of bacterial communities associated with T. magnatum truffles was investigated using culture-independent and -dependent 16S rRNA genebased approaches. Eighteen truffles were classified in three groups, representing different degrees of ascocarp maturation, based on the percentage of asci containing mature spores. The culturable bacterial fraction was 4.17 (+/- 1.61) x 10.000.000, 2.60 (+/- 1.22) x 10.000.000 and 1.86 (+/-1.32) x 1.000.000 cfu g-1 for immature, intermediate and mature ascocarps respectively. The total of bacteria count was two orders of magnitude higher than the cfu g-1 count. Sequencing results from the clone library showed a significant presence of alpha-Proteobacteria (634 of the 771 total clones screened, c. 82%) affiliated with Sinorhizobium, Rhizobium and Bradyrhizobium spp. The bacterial culturable fraction was generally represented by gamma-Proteobacteria (210 of the 384 total strains isolated, c. 55%), which were mostly fluorescent pseudomonads. Fluorescent in situ hybridization confirmed that alpha-Proteobacteria (85.8%) were the predominant components of truffle bacterial communities with beta-Proteobacteria (1.5%), gamma-Proteobacteria (1.9%), Bacteroidetes (2.1%), Firmicutes (2.4%) and Actinobacteria (3%) only poorly represented. Molecular approaches made it possible to identify alpha-Proteobacteria as major constituents of a bacterial component associated with T. magnatum ascoma, independently from the degree of maturation.openE. BARBIERI; C. GUIDI; J. BERTAUX; P. FREY-KLETT; J. GARBAYE; P. CECCAROLI; R. SALTARELLI; A. ZAMBONELLI; V. STOCCHIBarbieri, Elena; C., Guidi; J., Bertaux; P., FREY KLETT; J., Garbaye; Ceccaroli, Paola; Saltarelli, Roberta; A., Zambonelli; Stocchi, Vilbert

    Beings in their own right? Exploring Children and young people's sibling and twin relationships in the Minority World

    Get PDF
    This paper examines the contributions that the sociological study of sibship and twinship in the Minority World can make to childhood studies. It argues that, in providing one forum within which to explore children and young people's social relationships, we can add to our understanding of children and young people's interdependence and develop a more nuanced understanding of agency. As emergent subjects, children, young people and adults are in a process of ‘becoming’. However, this does not mean that they can ‘become’ anything they choose to. The notion of negotiated interdependence (Punch 2002) is useful in helping us to grasp the contingent nature of children and young people's agency

    In situ, real-time visualization of electrochemistry using magnetic resonance imaging

    Get PDF
    The drive to develop better electrochemical energy storage devices requires the development of not only new materials, but also better understanding of the underpinning chemical and dynamical processes within such devices during operation, for which new analytical techniques are required. Currently, there are few techniques that can probe local composition and transport in the electrolyte during battery operation. In this paper, we report a novel application of magnetic resonance imaging (MRI) for probing electrochemical processes in a model electrochemical cell. Using MRI, the transport and zinc and oxygen electrochemistry in an alkaline electrolyte, typical of that found in zinc-air batteries, are investigated. Magnetic resonance relaxation maps of the electrolyte are used to visualize the chemical composition and electrochemical processes occurring during discharge in this model metal-air battery. Such experiments will be useful in the development of new energy storage/conversion devices, as well as other electrochemical technologies

    Clinical value of SPECT/CT for evaluation of patients with painful knees after total knee arthroplasty- a new dimension of diagnostics?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of our study was to evaluate the clinical value of hybrid SPECT/CT for the assessment of patients with painful total knee arthroplasty (TKA).</p> <p>Methods</p> <p>Twenty-three painful knees in patients following primary TKA were assessed using Tc-99m-HDP-SPECT/CT. Rotational, sagittal and coronal position of the TKA was assessed on 3D-CT reconstructions. The level of the SPECT-tracer uptake (0-10) and its anatomical distribution was mapped using a validated localization scheme. Univariate analysis (Wilcoxon-Mann-Whitney, Spearmean`s-rho test, p < 0.05) was performed to identify any correlations between component position, tracer uptake and diagnosis.</p> <p>Results</p> <p>SPECT/CT imaging changed the suspected diagnosis and the proposed treatment in 19/23 (83%) knees. Progression of patellofemoral OA (n = 11), loosening of the tibial (n = 3) and loosening of the femoral component (n = 2) were identified as the leading causes of pain after TKA.</p> <p>Patients with externally rotated tibial trays showed higher tracer uptake in the medial patellar facet (p = 0.049) and in the femur (p = 0.051). Patients with knee pain due to patellofemoral OA showed significantly higher tracer uptake in the patella than others (p < 0.001).</p> <p>Conclusions</p> <p>SPECT/CT was very helpful in establishing the diagnosis and guiding subsequent management in patients with painful knees after TKA, particularly in patients with patellofemoral problems and malpositioned or loose TKA.</p

    Comparative assessment of gasification based coal power plants with various CO2 capture technologies producing electricity and hydrogen

    Get PDF
    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool “Aspen Plus”. The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency

    Salmonella Biofilm Formation on Aspergillus niger Involves Cellulose – Chitin Interactions

    Get PDF
    Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose–chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens

    WW Domains of the Yes-Kinase-Associated-Protein (YAP) Transcriptional Regulator Behave as Independent Units with Different Binding Preferences for PPxY Motif-Containing Ligands

    Get PDF
    YAP is a WW domain-containing effector of the Hippo tumor suppressor pathway, and the object of heightened interest as a potent oncogene and stemness factor. YAP has two major isoforms that differ in the number of WW domains they harbor. Elucidating the degree of co-operation between these WW domains is important for a full understanding of the molecular function of YAP. We present here a detailed biophysical study of the structural stability and binding properties of the two YAP WW domains aimed at investigating the relationship between both domains in terms of structural stability and partner recognition. We have carried out a calorimetric study of the structural stability of the two YAP WW domains, both isolated and in a tandem configuration, and their interaction with a set of functionally relevant ligands derived from PTCH1 and LATS kinases. We find that the two YAP WW domains behave as independent units with different binding preferences, suggesting that the presence of the second WW domain might contribute to modulate target recognition between the two YAP isoforms. Analysis of structural models and phage-display studies indicate that electrostatic interactions play a critical role in binding specificity. Together, these results are relevant to understand of YAP function and open the door to the design of highly specific ligands of interest to delineate the functional role of each WW domain in YAP signaling.This work was supported by the Spanish Ministry of Education and Science [grant BIO2009-13261-CO2], the Spanish Ministry of Economy and Competitivity [grant BIO2012-39922-CO2] including FEDER (European Funds for Regional Development) funds and the Governement of Andalusia [grant CVI-5915]. Marius Sudol was supported by PA Breast Cancer Coalition Grants (#60707 and #920093) plus the Geisinger Clinic

    Gene expression profiling of mucinous ovarian tumors and comparison with upper and lower gastrointestinal tumors identifies markers associated with adverse outcomes.

    Get PDF
    PURPOSE: Advanced-stage mucinous ovarian carcinoma (MOC) has poor chemotherapy response and prognosis and lacks biomarkers to aid stage I adjuvant treatment. Differentiating primary MOC from gastrointestinal (GI) metastases to the ovary is also challenging due to phenotypic similarities. Clinicopathologic and gene-expression data were analyzed to identify prognostic and diagnostic features. EXPERIMENTAL DESIGN: Discovery analyses selected 19 genes with prognostic/diagnostic potential. Validation was performed through the Ovarian Tumor Tissue Analysis consortium and GI cancer biobanks comprising 604 patients with MOC (n = 333), mucinous borderline ovarian tumors (MBOT, n = 151), and upper GI (n = 65) and lower GI tumors (n = 55). RESULTS: Infiltrative pattern of invasion was associated with decreased overall survival (OS) within 2 years from diagnosis, compared with expansile pattern in stage I MOC [hazard ratio (HR), 2.77; 95% confidence interval (CI), 1.04–7.41, P = 0.042]. Increased expression of THBS2 and TAGLN was associated with shorter OS in MOC patients (HR, 1.25; 95% CI, 1.04–1.51, P = 0.016) and (HR, 1.21; 95% CI, 1.01–1.45, P = 0.043), respectively. ERBB2 (HER2) amplification or high mRNA expression was evident in 64 of 243 (26%) of MOCs, but only 8 of 243 (3%) were also infiltrative (4/39, 10%) or stage III/IV (4/31, 13%). CONCLUSIONS: An infiltrative growth pattern infers poor prognosis within 2 years from diagnosis and may help select stage I patients for adjuvant therapy. High expression of THBS2 and TAGLN in MOC confers an adverse prognosis and is upregulated in the infiltrative subtype, which warrants further investigation. Anti-HER2 therapy should be investigated in a subset of patients. MOC samples clustered with upper GI, yet markers to differentiate these entities remain elusive, suggesting similar underlying biology and shared treatment strategies
    corecore