76 research outputs found

    Transfer of complex regional pain syndrome to mice via human autoantibodies is mediated by interleukin-1–induced mechanisms

    Get PDF
    Neuroimmune interactions may contribute to severe pain and regional inflammatory and autonomic signs in complex regional pain syndrome (CRPS), a posttraumatic pain disorder. Here, we investigated peripheral and central immune mechanisms in a translational passive transfer trauma mouse model of CRPS. Small plantar skin–muscle incision was performed in female C57BL/6 mice treated daily with purified serum immunoglobulin G (IgG) from patients with longstanding CRPS or healthy volunteers followed by assessment of paw edema, hyperalgesia, inflammation, and central glial activation. CRPS IgG significantly increased and prolonged swelling and induced stable hyperalgesia of the incised paw compared with IgG from healthy controls. After a short-lasting paw inflammatory response in all groups, CRPS IgG-injected mice displayed sustained, profound microglia and astrocyte activation in the dorsal horn of the spinal cord and pain-related brain regions, indicating central sensitization. Genetic deletion of interleukin-1 (IL-1) using IL-1αÎČ knockout (KO) mice and perioperative IL-1 receptor type 1 (IL-1R1) blockade with the drug anakinra, but not treatment with the glucocorticoid prednisolone, prevented these changes. Anakinra treatment also reversed the established sensitization phenotype when initiated 8 days after incision. Furthermore, with the generation of an IL-1ÎČ floxed(fl/fl) mouse line, we demonstrated that CRPS IgG-induced changes are in part mediated by microglia-derived IL-1ÎČ, suggesting that both peripheral and central inflammatory mechanisms contribute to the transferred disease phenotype. These results indicate that persistent CRPS is often contributed to by autoantibodies and highlight a potential therapeutic use for clinically licensed antagonists, such as anakinra, to prevent or treat CRPS via blocking IL-1 actions

    Chronic treatment with rofecoxib but not ischemic preconditioning of the myocardium ameliorates early intestinal damage following cardiac ischemia/reperfusion injury in rats

    Get PDF
    There is some recent evidence that cardiac ischemia/reperfusion (I/R) injury induces intestinal damage within days, which contributes to adverse cardiovascular outcomes after myocardial infarction. However, it is not clear whether remote gut injury has any detectable early signs, and whether different interventions aiming to reduce cardiac damage are also effective at protecting the intestine. Previously, we found that chronic treatment with rofecoxib, a selective inhibitor of cyclooxygenase-2 (COX-2), limited myocardial infarct size to a comparable extent as cardiac ischemic preconditioning (IPC) in rats subjected to 30-min coronary artery occlusion and 120-min reperfusion. In the present study, we aimed to analyse the early intestinal alterations caused by cardiac I/R injury, with or without the above-mentioned infart size-limiting interventions. We found that cardiac I/R injury induced histological changes in the small intestine within 2 h, which were accompanied by elevated tissue level of COX-2 and showed positive correlation with the activity of matrix metalloproteinase-2 (MMP-2), but not of MMP-9 in the plasma. All these changes were prevented by rofecoxib treatment. By contrast, cardiac IPC failed to reduce intestinal injury and plasma MMP-2 activity, although it prevented the transient reduction in jejunal blood flow in response to cardiac I/R. Our results demonstrate for the first time that rapid development of intestinal damage follows cardiac I/R, and that two similarly effective infarct size-limiting interventions, rofecoxib treatment and cardiac IPC, have different impacts on cardiac I/R-induced gut injury. Furthermore, intestinal damage correlates with plasma MMP-2 activity, which may be a biomarker for its early diagnosis

    PACAP-38 and PAC1 Receptor Alterations in Plasma and Cardiac Tissue Samples of Heart Failure Patients

    Get PDF
    Pituitary adenylate cyclase activating polypeptide-38 (PACAP-38) is a multifunctional neuropeptide, which may play a role in cardioprotection. However, little is known about the presence of PACAP-38 in heart failure (HF) patients. The aim of our study was to measure the alterations of PACAP-38 like immunoreactivity (LI) in acute (n = 13) and chronic HF (n = 33) and to examine potential correlations between PACAP-38 and HF predictors (cytokines, NT-proBNP). Tissue PACAP-38 LI and PAC1 receptor levels were also investigated in heart tissue samples of patients with HF. Significantly higher plasma PACAP-38 LI was detected in patients with acute HF, while in chronic HF patients, a lower level of immunoreactivity was observed compared to healthy controls (n = 13). Strong negative correlation was identified between plasma PACAP-38 and NT-proBNP levels in chronic HF, as opposed to the positive connection seen in the acute HF group. Plasma IL-1 ÎČ, IL-2 and IL-4 levels were significantly lower in chronic HF, and IL-10 was significantly higher in patients with acute HF. PACAP-38 levels of myocardial tissues were lower in all end-stage HF patients and lower PAC1 receptor levels were detected in the primary dilated cardiomyopathy group compared to the controls. We conclude that PACAP-38 and PAC1 expression correlates with some biomarkers of acute and chronic HF; therefore, further studies are necessary to explore whether PACAP could be a suitable prognostic biomarker in HF patients

    Recurrent Scedosporium apiospermum mycetoma successfully treated by surgical excision and terbinafine treatment: a case report and review of the literature

    Get PDF
    Background: Scedosporium apiospermum is an emerging opportunistic filamentous fungus, which is notorious for its high levels of antifungal ‑resistance. It is able to cause localized cutaneous or subcutaneous infections in both immu‑ nocompromised and immunocompetent persons, pulmonary infections in patients with predisposing pulmonary diseases and invasive mycoses in immunocompromised patients. Subcutaneous infections caused by this fungus frequently show chronic mycetomatous manifestation. Case report: We report the case of a 70 ‑year ‑old immunocompromised man, who developed a fungal mycetoma‑ tous infection on his right leg. There was no history of trauma; the aetiological agent was identified by microscopic examination and ITS sequencing. This is the second reported case of S. apiospermum subcutaneous infections in Hungary, which was successfully treated by surgical excision and terbinafine treatment. After 7 months, the patient remained asymptomatic. Considering the antifungal susceptibility and increasing incidence of the fungus, Sce - dosporium related subcutaneous infections reported in the past quarter of century in European countries were also reviewed. Conclusions: Corticosteroid treatment represents a serious risk factor of S. apiospermum infections, especially if the patient get in touch with manure ‑enriched or polluted soil or water. Such infections have emerged several times in European countries in the past decades. The presented data suggest that besides the commonly applied voricona‑ zole, terbinafine may be an alternative for the therapy of mycetomatous Scedosporium infections

    In Vitro Dedifferentiation of Melanocytes from Adult Epidermis

    Get PDF
    In previous work we described a novel culture technique using a cholera toxin and PMA-free medium (Mel-mix) for obtaining pure melanocyte cultures from human adult epidermis. In Mel-mix medium the cultured melanocytes are bipolar, unpigmented and highly proliferative. Further characterization of the cultured melanocytes revealed the disappearance of c-Kit and TRP-1 and induction of nestin expression, indicating that melanocytes dedifferentiated in this in vitro culture. Cholera toxin and PMA were able to induce c-Kit and TRP-1 protein expressions in the cells, reversing dedifferentiation. TRP-1 mRNA expression was induced in dedifferentiated melanocytes by UV-B irradiated keratinocyte supernatants, however direct UV-B irradiation of the cells resulted in further decrease of TRP-1 mRNA expression. These dedifferentiated, easily accessible cultured melanocytes provide a good model for studying melanocyte differentiation and possibly transdifferentiation. Because melanocytes in Mel-mix medium can be cultured with human serum as the only supplement, this culture system is also suitable for autologous cell transplantation

    The Importance of Aquaporin 1 in Pancreatitis and Its Relation to the CFTR Cl- Channel

    Get PDF
    Aquaporins (AQPs) facilitate the transepithelial water flow involved in epithelial fluid secretion in numerous tissues;however, their function in the pancreas is less characterized. Acute pancreatitis (AP) is a serious disorder in which specific treatment is still not possible. Accumulating evidence indicate that decreased pancreatic ductal fluid secretion plays an essential role in AP;therefore, the aim of this study was to investigate the physiological and pathophysiological role of AQPs in the pancreas. Expression and localization of AQPs were investigated by real-time PCR and immunocytochemistry, whereas osmotic transmembrane water permeability was estimated by the dye dilution technique, in Capan-1 cells. The presence of AQP1 and CFTR in the mice and human pancreas were investigated by immunohistochemistry. Pancreatic ductal HCO3- and fluid secretion were studied on pancreatic ducts isolated from wild-type (WT) and AQP1 knock out (KO) mice using microfluorometry and videomicroscopy, respectively. In vivo pancreatic fluid secretion was estimated by magnetic resonance imaging. AP was induced by intraperitoneal injection of cerulein and disease severity was assessed by measuring biochemical and histological parameters. In the mice, the presence of AQP1 was detected throughout the whole plasma membrane of the ductal cells and its expression highly depends on the presence of CFTR Cl- channel. In contrast, the expression of AQP1 is mainly localized to the apical membrane of ductal cells in the human pancreas. Bile acid treatment dose- and time-dependently decreased mRNA and protein expression of AQP1 and reduced expression of this channel was also demonstrated in patients suffering from acute and chronic pancreatitis. HCO3- and fluid secretion significantly decreased in AQP1 KO versus WT mice and the absence of AQP1 also worsened the severity of pancreatitis. Our results suggest that AQP1 plays an essential role in pancreatic ductal fluid and HCO3- secretion and decreased expression of the channel alters fluid secretion which probably contribute to increased susceptibility of the pancreas to inflammation

    Human keratinocytes are vanilloid resistant

    Get PDF
    BACKGROUND: Use of capsaicin or resiniferatoxin (RTX) as analgesics is an attractive therapeutic option. RTX opens the cation channel inflammatory pain/vanilloid receptor type 1 (TRPV1) permanently and selectively removes nociceptive neurons by Ca(2+)-cytotoxicity. Paradoxically, not only nociceptors, but non-neuronal cells, including keratinocytes express full length TRPV1 mRNA, while patient dogs and experimental animals that underwent topical treatment or anatomically targeted molecular surgery have shown neither obvious behavioral, nor pathological side effects. METHODS: To address this paradox, we assessed the vanilloid sensitivity of the HaCaT human keratinocyte cell line and primary keratinocytes from skin biopsies. RESULTS: Although both cell types express TRPV1 mRNA, neither responded to vanilloids with Ca(2+)-cytotoxicity. Only ectopic overproduction of TRPV1 rendered HaCaT cells sensitive to low doses (1-50 nM) of vanilloids. The TRPV1-mediated and non-receptor specific Ca(2+)-cytotoxicity ([RTX]>15 microM) could clearly be distinguished, thus keratinocytes were indeed resistant to vanilloid-induced, TRPV1-mediated Ca(2+)-entry. Having a wider therapeutic window than capsaicin, RTX was effective in subnanomolar range, but even micromolar concentrations could not kill human keratinocytes. Keratinocytes showed orders of magnitudes lower TRPV1 mRNA level than sensory ganglions, the bona fide therapeutic targets in human pain management. In addition to TRPV1, TRPV1b, a dominant negative splice variant was also noted in keratinocytes. CONCLUSION: TRPV1B expression, together with low TRPV1 expression, may explain the vanilloid paradox: even genuinely TRPV1 mRNA positive cells can be spared with therapeutic (up to micromolar) doses of RTX. This additional safety information might be useful for planning future human clinical trials
    • 

    corecore