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What's already known about this topic: 

-Microbes are integral components of the human ecosystem. 

-The cutaneous microbiota plays an important role in the regulation of skin homeostasis.  

-The composition of skin microbiota is influenced by many factors. 

What does this study add?  

-The dominance of P. acnes in the postadolescent sebum-rich skin regions and its role in acne 

pathogenesis may be explained by the disappearing microbiota hypothesis. 
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Abstract 

 

From our birth, we are constantly exposed to bacteria, fungi and viruses, some of which are capable 

of transiently or permanently inhabiting our different body parts as our microbiota. The majority of 

our microbial interactions occur during and after birth, and several different factors, including age, 

sex, genetic constitution, environmental conditions and life style, have been suggested to shape the 

composition of this microbial community. Propionibacterium acnes (P. acnes) is one of the most 

dominant lipophilic microbes of the postadolescent, sebum-rich human skin regions. Currently, the 

role of this bacterium in the pathogenesis of the most common inflammatory skin disease acne 

vulgaris is a topic of intense scientific debate. Recent results suggest that Westernization strongly 

increases the dominance of the Propionibacterium genus in human skin compared to natural 

populations living more traditional lifestyles. According to the disappearing microbiota hypothesis 

proposed by Martin Blaser a few years ago, such alterations in the composition of our microbiota are 

the possible consequences of socioeconomic and lifestyle changes occurring after the industrial 

revolution. Evanescence of species that were important elements of the human ecosystem might 
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lead to the overgrowth and subsequent dominance of others because of the lack of ecological 

competition. Such changes can disturb the fine-tuned balance of the human body and, accordingly, 

our microbes developed through a long co-evolutionary process. These processes might lead to the 

transformation of a seemingly harmless species into an opportunistic pathogen through bacterial 

dysbiosis. This might have happen in the case of P. acnes in acne pathogenesis. 

 

Introduction 

 

Our microbiota is the result of constant exposure to bacteria, fungi and viruses, which 

transiently or permanently inhabit our body parts. Many of these microbial species are not simply 

passive bystanders, but, together with various human cells, form a complex ecosystem 1-3.  

The first identified human-associated bacterium, Escherichia coli, was isolated from stool 

samples of healthy and diseased children by pediatrician Theodor Escherich in the 1880’s 4. His 

contemporary Louis Pasteur had already hypothesized that normal human flora were essential for 

life (reviewed by Mackowiak, et al.) 5. The idea that microbes can act as important integral 

components of the human body received particular attention a decade ago, and subsequently, 

studies on microbial communities inhabiting various organs have become increasingly popular. The 

Human Microbiome Project (HMP) was launched in 2007 to identify and characterize these 

microorganisms 6. Much interesting data has been gathered by internationally coordinated research 

efforts in the last few years; however, we are still far from completely understanding the exact role 

of these microbes. 

 

The microbiota 

Various parts of the human body provide appropriate environments for colonization by several 

microbial species even in healthy individuals. Surfaces that come into direct contact with the 

external environment provide constant temperature, moisture and nutrient availability, allowing 

bacterial and fungal species to be selected through a long co-evolutionary process 7;8. Colonization of 

our skin, regions of the alimentary canal and parts of our urogenital tract has been long known. 

However, organs previously considered sterile, such as lung and placenta, may also have their own 

resident community 9-11.  
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The relationship between resident microbial communities and human cells is very complex. 

Previously it was thought that resident microbes inhabit the available niches and use the nutrients 

that are present without pathogenesis. Today it is clear that these species and their metabolic 

products also play important roles in a wide range of biological functions. In fact, they may regulate 

the development of cellular and histological features of colonized human organs and help to 

maintain their proper functions 12-14.  

 

Factors shaping the composition of the skin microbiota 

 

The cutaneous microbiota populates the epidermis and the pilosebaceous unit of human skin 

15;16. To date, approximately 1000 bacterial species belonging to 19 phyla, as well as fungal 

(dermatophytes) and viral species have been identified as members of this community 15. 

Actinobacteria (Propionibacterium and Corynebacterium species), Proteobacteria, Firmicutes 

(Staphylococcus species) and Bacteroidetes are the most common representatives of the four 

dominant bacterium phyla. Many factors (individual, lifestyle, environmental) influence the 

microbial diversity of our skin, and changes in any of these conditions can result in rapid alterations 

of the species composition within the community 15;17;18.  

 

Early colonization 

 

Cutaneous colonization generally starts at birth. Individual differences in the composition of the 

microbiota of the gut and possibly of the skin may be caused by the mode and manner of birth 

(vaginal or cesarean delivery, hospital or home setting, use of antibiotics, etc.) 19-22. During vaginal 

delivery, babies come into contact with their mothers’ vaginal microbes, and this encounter will 

determine the composition of the pioneer colonizers, including  Lactobacillus, Prevotella, Atopobium 

and Snethia spp. Children delivered by C-section acquire their first inhabitants from their 

environment (mainly Staphylococcus spp. and other skin bacteria), which do not necessarily 

originate from their mothers.  Initially the flora of a newborn is completely identical and 

undifferentiated at various anatomical sites (e.g., gut, mouth, skin), regardless of the mode of 

delivery 20. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Early colonization is a critical event and may have long-term consequences, as microbes that 

most efficiently adapt to an environment will subsequently become dominant. When two species 

cannot coexist and compete for the same resources, even a slight advantage (e.g., faster growth, 

more effective use of the available nutrients, or more efficient binding to the available attachment 

sites of the surrounding tissues) may allow one species to out-compete the other. In ecology, this 

phenomena is referred to as competitive exclusion 23. In cases of less severe competition, marked 

delays in the colonization of beneficial species may occur: babies delivered through C-section exhibit 

delayed colonization of Lactobacillus, Bifidobacterium and Bacterioidetes spp. in the gut 24;25. 

Dominant microbes of a community actively modify the properties of their environment and, as a 

result, the microbial ecology.  Many commensals secrete factors, such as phenol-soluble modulins 

and bacteriocins from Staphylococcus epidermidis and acnecin from Propionibacterium acnes (P. 

acnes), that are bacteriostatic or antibacterial for other species 26-28. Early colonizers may also 

change their microenvironment to enhance their own growth and inhibit the growth of other 

microbes.  

Another factor that may also influence early colonization is the presence of vernix caseosa (VC) 

on the newborn skin. This white, creamy substance is synthesized during the third trimester of 

neonates 29;30. It is highly cellular: polygonal, water-filled corneocytes are embedded in an 

amorphous, lipid-rich material. The structure is somewhat similar to the cornified envelope layer 

called stratum corneum (SC) of postnatal skin, although corneocytes are not interconnected by 

desmosomal cellular contacts, and the lipid matrix does not possess a lamellar architecture. As a 

result, VC is considered a mobile, fluidic SC 31,32.  

VC is mainly composed of water (81%), lipids (9%) and proteins (10%) 33. Its lipid content is 

mostly of sebaceous origin, synthesized from the third trimester onward, marking an important step 

of neonatal epidermal barrier maturation. Other important components are proteins, many of which 

exhibit antimicrobial properties. As a result of its complex composition and structure, VC exhibits 

multifaceted biological functions. It acts as a mechanical barrier, offers lubrication during birth, has 

important waterproofing properties, and may aid thermoregulation after delivery. Because of its 

viscous and hydrophobic nature and its protein constituents, VC also has important antimicrobial 

functions, protecting the baby from the colonization and growth of pathogenic microbes 34;35. The pH 

of the skin surface is 6.0 at birth and becomes slightly more acidic (pH=5.1) during the first 6 weeks 

of life. VC appears to facilitate these events, further favoring the early colonization of skin 

commensal microbes as opposed to pathogens 36;37. It also provides an anti-oxidant shield and aids 

wound healing of newborn skin. Overall, because of its complex functions, VC is an important 
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substance providing a smooth transition between intra– and extrauterine life 31 and aiding the 

formation of a balanced, human–microbial ecosystem. 

Changes in the pattern of early colonization may lead to unfavorable consequences. Early 

stimuli can critically affect the developing immune system of the baby, and might lead to the 

development of atopic, chronic inflammatory and allergic diseases later. These effects are well 

studied in the case of the gut microbiota, but little is known about the exact nature and effect of the 

cutaneous microbiota on the pathogenesis of such diseases 38. 

 

Host factors 

After early colonization and stabilization on the skin, Streptococcaceae and other Firmicutes, 

Bacteroidetes, β and γ-Proteobacteria dominate the microbiome of children. The composition of this 

community changes during puberty, when endocrine-induced events result in hyperplasia of 

sebaceous glands and subsequently enhance sebum excretion 30;39. The most pronounced alterations 

affect areas where the density of sebaceous glands is the highest (face, shoulders, chest and back). 

These locations likely experience the largest shift in composition of the resident microbes. By 

analyzing the composition of microbial communities, investigators have noted that the species 

diversity clearly decreases with sexual maturation and that lipophilic microbes, including members 

of the Corynebacteriaceae and Propionibacteriaceae families, gain dominance on the face 39;40. 

P. acnes, one of the most dominant lipophilic microbes of human postadolescent skin, is a 

Gram-positive, anaerobic fermenting, rod-shaped bacterium. P. acnes has been shown to secrete 

various enzymes, including lipases, that generate fatty acids from sebum lipids, and might 

compromise the growth of other microbes 28;34. P. acnes also secretes short-chain fatty acids (SCFA) 

during anaerobic fermentation, one of which, propionic acid, clearly exhibits antibacterial effects 41-

43. The generated free fatty acids together with the secreted SCFAs may contribute to the 

maintenance of a skin pH that is acidic enough to restrict many microbes 44. These data together 

explain why this bacterium is dominant in sebum-rich skin. The generation of an environment that is 

hostile to other microbes suggests that the observed decrease of microbiota diversity during puberty 

is a direct consequence of P. acnes expansion. 

After this transitory period, the core composition of the cutaneous microflora stabilizes by early 

adulthood. The type and number of bacterial groups that become accustomed to our body is 

intriguingly limited, suggesting the presence of strong selective forces and co-evolution 45. Marked 

differences in microbiome composition can, however, be detected in samples originating from 
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different anatomical locations of the same individual, suggesting that physiological properties of a 

given niche lead to site-specific differences in the local composition 15;39;46. According to Grice et al., 

the dominant phyla in sebum-rich regions are the Actinobacteria (Propionibacteria ssp.) and 

Firmicutes (Staphylococci ssp). Moist areas (e.g., armpit, interdigital areas, inguinal crease) are 

mostly populated by Corynebacteria and Staphylococcus. Dry regions (forearm, buttock) host the 

most diverse, mixed population of Actinobacteria, Proteobacteria, Firmicutes and Bacteriodetes 15, 17. 

Gender also has a noteworthy impact on the microflora. Sex-specific differences likely manifest 

directly after birth, as recent data suggest that the lipid composition of VC in newborn boys and girls 

differs: the VC of girls seems to contain higher proportion of wax esters and triacylglycerols with 

longer hydrocarbon chains than those found in the VC of boys 47. Fine anatomical and physiological 

properties of the skin (thickness, pH, composition and rate of sebum secretion, cosmetic use) might 

also contribute to gender-specific differences even when comparing the same regions 18;46;48. Skin 

surface pH is generally lower and sebum secretion higher in males compared females in age-

matched cohorts 49. 

The reproductive organs also host a specialized microbiome due to their large differences in 

anatomical and physiological properties (e.g., chemical composition, pH). Specific species that 

normally populate the genitals have been shown to spread to other anatomical regions: thus, 

bacteria previously characterized as genital (Lactobacillus and Gardnerella in females, 

Corynebacterium in males) have also been detected in samples originating from other areas, such as 

the upper buttock 50.  

 

Geographic, environmental, socio-economic and lifestyle factors 

 

Individual habits together with the properties of the surrounding environment are important 

determinants for the composition of human skin microbiota. Westernized lifestyles have clearly 

reduced the microbial load and diversity in our environment. Epidemiological studies at the end of 

the twentieth century revealed that changes occurring after the industrial revolution, including 

personal and household hygiene as well as declining family size, led to enormous increases in the 

prevalence of atopic and other diseases. In 1989, David P. Strachan proposed the hygiene hypothesis 

51, which suggests that the quantity and diversity of the environmental microbes with which we 

come into contact are crucial for the development of our immune systems. In addition to the effects 

of contact with environmental microbes, microbial components of the human ecosystem have also 
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been suggested to play important roles in the maintenance of our healthy and balanced states 52;53. 

Important questions remain as to whether and how all these changes can affect our body and 

homeostasis.  

Agricultural development, urbanization, the industrial revolution and Westernization represent 

prominent shifts in human cultural development that have resulted in changes in individual 

lifestyles, and most probably, in our microbiota. Analysis of these events is rather difficult, as archive 

or archeological materials preserving ancient microbiomes are not readily available. A recent study 

of historic samples excavated from a monastery in Germany examined dental tissues of human 

skeletons (ca. 950-1200 CE) exhibiting signs of periodontal disease. Results suggests that currently 

known oral pathogens (e.g., Tannerella forsythia, Porphyromonas gingivalis, Treponema denticola) 

have long been associated with the development of periodontal disease, regardless of changes in 

diet and personal oral hygiene 54, and might have become part of the human oral flora in parallel 

with the introduction of farming in the early Neolithic period 55. It is also intriguing that these 

bacteria included sequences similar to antibiotic-resistance (AR) genes, long before antibiotics were 

available. The presence of such sequences were also identified in another study conducted on 

members of a contemporary population (Yanomami) in the Amazonian jungle, in Venezuela, who 

lives a seminomadic, hunter-gatherer lifestyle that is presumably very similar to the lifestyle of our 

ancestors. These individuals have been secluded from Westernized lifestyle and, as reported, have 

not been exposed to medical doses of antibiotics throughout their history 56.  Still, AR gene-like 

sequences are present in their microbial genomes, suggesting that our microbiome may have been 

serving as a reservoir and source of antibiotic resistance 54,56.  

To model changes in the cutaneous microflora throughout human history, several groups now 

focus on the analysis of contemporary populations with traditional, less industrialized lifestyles. 

Comparing these groups with Westernized populations might elucidate conditions that can be 

associated with historical lifestyles 56;57. Strikingly, the results from these studies also indicate that 

more traditional living conditions mostly correlate to higher microbiome diversity 54;56;58. The most 

complex composition reported to date was discovered on Yamomami individuals, except for the oral 

samples, where species diversity was comparable to US individuals living a Westernized lifestyle 56;57.  

The cutaneous microbiota of these individuals appears to be highly complex, but Staphylococcus, 

Propionibacterium, Corinebacterium and Neisseria species are much less dominant for Yamomami 

and South American Amerindian individuals than for Westernized populations 56;58. Generally, 

Westernization seems to be associated with an increasing dominance of the Actinobacteria phylum 

and, particularly, the Propionibacterium genus on the skin 58. 
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These data corroborate nicely with the disappearing microbiota hypothesis proposed by Martin 

Blaser. According to this proposition, the two major routes to acquire resident microflora are vertical 

acquisition (by maternal transmission to the offspring) and horizontal transfer (from the 

surroundings through contaminated environment, food, drinking water and physical contact). 

Because of changes in hygiene, housing and family models, the latter route has gradually become 

less prominent in the human population. As a consequence, loss of particular microbes in the 

maternal generation could be inherited by subsequent generations, and, thus, the loss could 

become permanent. The net effect would be gradually decreasing variability in our resident 

microbes, or, in other words, disappearing microbiota 45;59. The combined effects of decreasing 

diversity for environmental microbes (hygiene hypothesis) and drastic changes in human ecology 

might also lead to declining diversity in our resident flora (disappearing microbiota hypothesis). 

These events might be linked to the gradual increase in the prevalence of Westernization diseases, 

including atopic diseases, such as asthma, as well as obesity and metabolic syndrome 45;59;60. 

Clearly, socioeconomic changes and the resulting lifestyle differences have a great impact on our 

microbiota; however, it is less clear how seasonal changes, climate and ethnicity affect our 

cutaneous microbial community. Most of the currently available studies are associated with the 

HMP 61 and have been conducted in Western countries. Only a handful of reports have investigated 

populations living under different climatic zones in different geographical areas 6;57;58;62. According to 

the available data, while the core composition of the microbiome is similar for different populations 

(Proteobacteria, Firmicutes, Actinobacteria phyla), clear differences have been detected. Relative 

abundances of various genera can be diverse — perhaps even unique — and population-specific 

microbes have been identified, such as the Enhydrobacter genus in the cutaneous samples of 

Chinese individuals 62. It should be noted that dissimilarities among populations may not be entirely 

caused by geographic differences. The lifestyle and socioeconomic differences described above 

should also be taken into consideration when comparing geographically distinct populations. It is 

difficult to assess how substantial the impact of environmental differences on the skin microbiome 

composition is, as such a comparison should include, for example, equally modernized populations 

exhibiting a very similar lifestyle. One investigation compared groups living in two states within the 

United States, Colorado and New York. Even though socioeconomic differences were likely to be 

small, subtle alterations in the microbiome composition were apparent, suggesting that geographic 

and climatic factors may also have some effect 58.  
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Nonetheless, these studies clearly indicate the importance of well designed and large-scale 

investigation of different populations to further increase our understanding of pan-microbiome 

composition.  

 

What can we learn about the role of the cutaneous microbiota in acne pathogenesis? 

 

A balanced interaction between microbial and human cells is important for the maintenance 

and promotion of healthy functions 12;13;50. Microbes can synthesize and release nutrients from our 

food for use by human cells, protect us from the colonization of pathogenic or harmful invaders, 

beneficially modulate our immune system and even facilitate differentiation and renewal of certain 

tissues (e.g., gut mucosa) 12;63. When this delicate and intricate equilibrium is disturbed in our 

ecosystem, dysbiosis develops, leaving us vulnerable to microbial diseases. Changes in the 

microenvironment and colonization by an extraneous microbe can contribute to dysbiosis and, 

together with other pathogenic factors, might lead to diseases such as seborrheic dermatitis 

(Malassezia spp), atopic dermatitis (Staphylococcus aureus), post-operative infections 

(Staphylococcus epidermidis) or acne vulgaris (P. acnes) 12;17;64. 

In many cases it is difficult to clearly distinguish between commensal, symbiotic and  

pathogenic microbes, as the behavior and impact of a microbe can be strongly context dependent 45. 

For these reasons, the pathogenic roles of several species, including P. acnes and its involvement in 

acne vulgaris, are a matter of intense scientific debate 28;65-67.  

Several changes occurring in puberty, such as hormonal changes, androgen excess, sebaceous 

gland hyperplasia and subsequently enhanced sebum secretion, create a permissive environment for 

lipophilic bacteria. At this time, a shift from the “childhood” microbiome, in which Streptococcaceae,  

Firmicutes β- and γ Proteobacteria predominate, to a more “mature” composition dominated by 

Corynebacteriaceae and Propionibacteriaceae occurs 39. Changes in the skin microenvironment drive 

these events as well as the possible strong competitive exclusion generated by the “newcomers.” 

During this transitory period, dysbiosis can occur before the stabilization of the adult ecosystem.   

Keeping in mind these natural, developmentally driven changes in microbiome composition, it is 

interesting to consider the microbial consequences of Westernization. In natural populations, the 

composition of the cutaneous microflora is more complex and balanced compared to Westernized 

groups, where P. acnes clearly dominate the postpubertal microbiota 56;56. What causes these 
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differences is currently not known. During puberty, enhanced sebum secretion may provide a 

growth advantage for the lipophilic P. acnes, and the bacterium can subsequently modify its 

environment by lowering the pH as a result of SCFA secretion. In contrast, the disappearing 

microbiota hypothesis may also provide some explanation. Competing microbes controlling P. acnes 

growth might have been gradually lost as a result of Westernization. The consequence of such a loss 

might be the dominance of P. acnes, its enhanced growth and the resulting dysbiosis leading to acne 

pathogenesis during puberty.  

This could also imply that acne is a disease of Westernized populations. Although no reports are 

available on the incidence of acne in natural populations, earlier reports suggest that acne does not 

equally affect all populations: acne vulgaris is present in 80 to 90% of the adolescents living in 

developed countries 68;69, whereas, in isolated communities, this ratio can be much lower. Some 

reports suggest that acne is or was nonexistent in the inhabitants of the island of Okinawa before 

World War II 70, the Bantus in South Africa 71;72, isolated South American Indians 73, and Pacific 

Islanders 74, the lifestyles of all of these populations are considerably less Westernized than in 

developed countries 75.  

Whether P. acnes load is higher in the skin of acne patients than unaffected individuals is 

currently not clear. Earlier reports provided conflicting results 76-78; the reason for this disagreement 

is likely that the bacterium is located deep in the pilosebaceous units, that it exhibits different 

culturing properties and that it often presents in a biofilm form. It seems, however, that increased 

incidence of P. acnes biofilms is detectable in the lesional skin samples of patients 79. How and why 

exactly this happens is currently not known. Bacterial quorum sensing could possibly explain this 

discrepancy: by reaching a threshold density, the bacterium may start to form a biofilm in the 

pilosebaceous unit and express molecules contributing to bacterial pathogenicity 80. Such 

transformations might lead to dysbiosis and, subsequently, also to acne pathogenesis.  

Even if the relative abundance of the bacterium is similar, there are indications that the P. acnes 

population structure of controls is different for acne patients. Strains that preferentially present in 

lesional skin samples might have altered genetic and microbiologic properties, as well as 

pathogenicity 81. 

Although it has not been explicitly proven, we believe that all these data strongly suggests that P. 

acnes has a role in acne pathogenesis.  
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How can this knowledge be put into practice?  

 

Can we somehow overcome the potentially deleterious effects of the disappearance of various 

species from our microbial ecosystems? Is it possible to artificially modify the pattern of microbial 

transfer or aid the transfer of a complex, balanced microbiota to prevent various diseases? It may be 

possible. There are already exploratory clinical studies that are implementing this idea. Alteration of 

the gut flora by fecal microbiota transplantation (FMT) has already shown efficacy in severe 

Clostridium difficile infections and has been proposed for the treatment of other conditions (e.g., 

inflammatory bowel disease, irritable bowel syndrome, metabolic syndrome), in which the 

composition of the gut microbiome differs from the healthy state 82. Another, widely used method to 

restore a balanced intestinal microflora is to use probiotics, which are clearly beneficial after 

antibiotic use. Probiotics might also have beneficial effects for diseases such as obesity, insulin 

resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease, although this conclusion 

requires further, well designed, rigorous clinical investigation 83. 

Attempts are also being made to provide an appropriate pioneer flora to babies who are not 

delivered vaginally. In a recent article, Dominguez-Bello and colleagues reported a clinical trial to 

establish a healthy microbiota in C-section-delivered babies by wiping them with a gauze previously 

exposed to the vaginal fluids of their mothers. Although the results are preliminary, the analyzed 

sample size is relatively small and only partial microbiome reconstitution was achieved, the results 

clearly suggests that during the analyzed time period the microbiota of wiped, C-section delivered 

babies are more similar to vaginally delivered children compared to untreated, C-section delivered 

neonates 84. The consequences of such procedures on the overall health and the prevalence of, for 

example, atopic and chronic inflammatory diseases is of interest for following in long-term studies. 

If the above proposed model of acne pathogenesis and the role of P. acnes is confirmed, would 

it be possible to treat this condition by artificially modifying the composition of cutaneous 

microbiota of the teenager population? Currently it is difficult to answer this question. Further 

studies of natural populations living more traditional lifestyles would be very useful to define a core 

“ancient” cutaneous microbiota composition. From such knowledge, we could select microbes that 

might provide an appropriate control over P. acnes dominance but were most likely lost during our 

socioeconomical development. Topical formulations including these selected species are envisioned 

for application in a way analogous to probiotic use. Naturally, detailed and rigorous in vitro and in 

vivo experiments would be needed to test the interaction of the different microbes with one 
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another, their effects on skin cells and, finally on the whole organism. To support methods for 

replacing microflora lost by Westernized lifestyles, it will also be necessary to examine lifestyle and 

other changes that maintain healthy microflora complexity and balance as, presumably, the forces in 

our modern environments that reduce complexity are still in effect. 

 

Conclusion 

 

A complex interplay between a host and its microbiota is important for the maintenance of 

healthy skin function. Because of the polygenic and multifactorial nature of the disease, there are 

many possible alternative paths leading to the pathogenesis of acne vulgaris. One possible 

mechanism might be a change in the interaction between the skin cells and the cutaneous 

microflora leading to an imbalanced state and subsequently causing a “harmless” commensal, such 

as P. acnes, to become pathogenic.  
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