53 research outputs found

    IL-10 administration reduces PGE-2 levels and promotes CR3-mediated clearance of Escherichia coli K1 by phagocytes in meningitis

    Get PDF
    Ineffectiveness of antibiotics in treating neonatal Escherichia coli K1 meningitis and the emergence of antibiotic-resistant strains evidently warrants new prevention strategies. We observed that administration of interleukin (IL)-10 during high-grade bacteremia clears antibiotic-sensitive and -resistant E. coli from blood of infected mice. Micro-CT studies of brains from infected animals displayed gross morphological changes similar to those observed in infected human neonates. In mice, IL-10, but not antibiotic or anti-TNF antibody treatment prevented brain damage caused by E. coli. IL-10 administration elevated CR3 expression in neutrophils and macrophages of infected mice, whereas infected and untreated mice displayed increased expression of FcγRI and TLR2. Neutrophils or macrophages pretreated with IL-10 ex vivo exhibited a significantly greater microbicidal activity against E. coli compared with cells isolated from wild-type or IL-10−/− mice. The protective effect of IL-10 was abrogated when CR3 was knocked-down in vivo by siRNA. The increased expression of CR3 in phagocytes was caused by inhibition of prostaglandin E-2 (PGE-2) levels, which were significantly increased in neutrophils and macrophages upon E. coli infection. These findings describe a novel modality of IL-10–mediated E. coli clearance by diverting the entry of bacteria via CR3 and preventing PGE-2 formation in neonatal meningitis

    Comparative Proteomics of Inner Membrane Fraction from Carbapenem-Resistant Acinetobacter baumannii with a Reference Strain

    Get PDF
    Acinetobacter baumannii has been identified by the Infectious Diseases Society of America as one of the six pathogens that cause majority of hospital infections. Increased resistance of A. baumannii even to the latest generation of β-lactams like carbapenem is an immediate threat to mankind. As inner-membrane fraction plays a significant role in survival of A. baumannii, we investigated the inner-membrane fraction proteome of carbapenem-resistant strain of A. baumannii using Differential In-Gel Electrophoresis (DIGE) followed by DeCyder, Progenesis and LC-MS/MS analysis. We identified 19 over-expressed and 4 down-regulated proteins (fold change>2, p<0.05) in resistant strain as compared to reference strain. Some of the upregulated proteins in resistant strain and their association with carbapenem resistance in A. baumannii are: i) β-lactamases, AmpC and OXA-51: cleave and inactivate carbapenem ii) metabolic enzymes, ATP synthase, malate dehydrogenase and 2-oxoglutarate dehydrogenase: help in increased energy production for the survival and iii) elongation factor Tu and ribosomal proteins: help in the overall protein production. Further, entry of carbapenem perhaps is limited by controlled production of OmpW and low levels of surface antigen help to evade host defence mechanism in developing resistance in A. baumannii. Present results support a model for the importance of proteins of inner-membrane fraction and their synergistic effect in the mediation of resistance of A. baumannii to carbapenem

    Peginterferon still has a place in the treatment of hepatitis C caused by genotype 3 virus

    Get PDF
    ABSTRACT Despite recent advances in therapy for chronic hepatitis C (CHC), the disease caused by genotype 3 virus (GEN3) is still considered a treatment challenge in certain patient subgroups. The aim of this retrospective study was to evaluate the effectiveness and safety of the peginterferon (Peg-IFN) and ribavirin (RBV) combination treatment for GEN3/CHC patients, and to evaluate sustained virological response (SVR) indicators and early treatment interruption due to serious adverse events (SAE). This was a retrospective observational study of GEN3/CHC patients, co-infected or not by HIV and treated with Peg-IFN/RBV in nine Brazilian healthcare centers. The study sample included 184 GEN3/CHC patients; 70 (38%) were co-infected with HIV. The overall SVR rate was 57.1% (95% CI 50-64). Among co-infected and mono-infected patients, the SVR rate was 51.4% (36/70) and 60.5% (69/114), respectively (p=0.241). Thirty-four (18.5%) patients experienced SAE and interrupted treatment. SVR was negatively associated with the use of Peg-IFN alpha 2b (PR 0.75; 95% CI 0.58-0.99; p=0.045) and to early treatment interruption due to SAE (PR 0.36; 95% CI 0.20-0.68; p=0.001). Early treatment interruption due to SAE was associated with age (PR 1.06; 95% CI 1.02-1.10; p<0.001) and occurrence of liver cirrhosis (PR 2.06; 95% CI 1.11-3.83; p=0.022). In conclusion, Peg-IFN/RBV might represent an adequate treatment option, mainly in young patients without advanced liver disease or when the use of direct-action drugs is limited to specific patient groups

    Current closure through the neutron star crust

    Get PDF
    Force-free pulsar magnetospheres develop a large-scale poloidal electric current circuit that flows along open magnetic field lines from the neutron star to the termination shock. The electric current closes through the interior of the neutron star where it provides the torque that spins-down the star. In the present work, we study the internal electric current in an axisymmetric rotator. We evaluate the path of the electric current by requiring the minimization of internal Ohmic losses. We find that, in millisecond pulsars, the current reaches the base of the crust, while in pulsars with periods of a few seconds, the bulk of the electric current does not penetrate deeper than about 100 m. The region of maximum spin-down torque in millisecond pulsars is the base of the crust, while in slowly spinning ones it is the outer crust. We evaluate the corresponding Maxwell stresses and find that, in typical rotation-powered radio pulsars, they are well below the critical stress that can be sustained by the crust. For magnetar-level fields, the Maxwell stresses near the surface are comparable to the critical stress and may lead to the decoupling of the crust from the rest of the stellar rotation
    corecore