283 research outputs found

    Healthcare access for refugees in Greece: Challenges and opportunities

    Get PDF
    The arrival of more than one million refugees and migrants in Europe in 2015, most of whom transited through Greece, has placed significant strains on local health systems and demonstrated the need for preparedness to meet the immediate and longer-term health needs of arrivals in EU countries. Population movements will continue to occur and the need for cost effective, appropriate provision of both primary and secondary health services to meet these needs is key. The Global Compact on Migration was ratified in 2018 and forms an overarching, international agreement to address safe, orderly and regular migration which benefits refugees and migrants as well as host communities; however, it did not give due emphasis to health. In this manuscript, we explore the evolution of the health response for refugees in Greece over the last three years, the challenges faced at different times of the response and the efforts to integrate refugees into Greece’s health system

    Modest de novo Reactivation of Single HIV-1 Proviruses in Peripheral CD4+ T Cells by Romidepsin

    Get PDF
    A cure for human immunodeficiency virus (HIV-1) is restricted by the continued presence of a latent reservoir of memory CD4+ T cells with proviruses integrated into their DNA despite suppressive antiretroviral therapy (ART). A predominant strategy currently pursued in HIV-1 cure-related research is the “kick and kill” approach, where latency reversal agents (LRAs) are used to reactivate transcription from integrated proviruses. The premise of this approach is that “kicking” latent virus out of hiding allows the host immune system to recognize and kill infected cells. Clinical trials investigating the efficacy of LRAs, such as romidepsin, have shown that these interventions do induce transient spikes in viral RNA in HIV-1-infected individuals. However, since these trials failed to significantly reduce viral reservoir size or significantly delay time to viral rebound during analytical treatment interruptions, it is questioned how much each individual latent provirus is actually “kicked” to produce viral transcripts and/or proteins by the LRA. Here, we developed sensitive and specific digital droplet PCR-based assays with single-provirus level resolution. Combining these assays allowed us to interrogate the level of viral RNA transcripts from single proviruses in individuals on suppressive ART with or without concomitant romidepsin treatment. Small numbers of proviruses in peripheral blood memory CD4+ T cells were triggered to become marginally transcriptionally active upon romidepsin treatment. These novel assays can be applied retrospectively and prospectively in HIV-1 cure-related clinical trials to gain crucial insights into LRA efficacy at the single provirus level

    A very brief description of LOFAR - the Low Frequency Array

    Get PDF
    LOFAR (Low Frequency Array) is an innovative radio telescope optimized for the frequency range 30-240 MHz. The telescope is realized as a phased aperture array without any moving parts. Digital beam forming allows the telescope to point to any part of the sky within a second. Transient buffering makes retrospective imaging of explosive short-term events possible. The scientific focus of LOFAR will initially be on four key science projects (KSPs): 1) detection of the formation of the very first stars and galaxies in the universe during the so-called epoch of reionization by measuring the power spectrum of the neutral hydrogen 21-cm line (Shaver et al. 1999) on the ~5' scale; 2) low-frequency surveys of the sky with of order 10810^8 expected new sources; 3) all-sky monitoring and detection of transient radio sources such as gamma-ray bursts, x-ray binaries, and exo-planets (Farrell et al. 2004); and 4) radio detection of ultra-high energy cosmic rays and neutrinos (Falcke & Gorham 2003) allowing for the first time access to particles beyond 10^21 eV (Scholten et al. 2006). Apart from the KSPs open access for smaller projects is also planned. Here we give a brief description of the telescope.Comment: 2 pages, IAU GA 2006, Highlights of Astronomy, Volume 14, K.A. van der Hucht, e

    Different effects of deep inspirations on central and peripheral airways in healthy and allergen-challenged mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deep inspirations (DI) have bronchodilatory and bronchoprotective effects in healthy human subjects, but these effects appear to be absent in asthmatic lungs. We have characterized the effects of DI on lung mechanics during mechanical ventilation in healthy mice and in a murine model of acute and chronic airway inflammation.</p> <p>Methods</p> <p>Balb/c mice were sensitized to ovalbumin (OVA) and exposed to nebulized OVA for 1 week or 12 weeks. Control mice were challenged with PBS. Mice were randomly selected to receive DI, which were given twice during the minute before assessment of lung mechanics.</p> <p>Results</p> <p>DI protected against bronchoconstriction of central airways in healthy mice and in mice with acute airway inflammation, but not when OVA-induced chronic inflammation was present. DI reduced lung resistance induced by methacholine from 3.8 ± 0.3 to 2.8 ± 0.1 cmH<sub>2</sub>O·s·mL<sup>-1 </sup>in healthy mice and 5.1 ± 0.3 to 3.5 ± 0.3 cmH<sub>2</sub>O·s·mL<sup>-1 </sup>in acute airway inflammation (both <it>P </it>< 0.001). In healthy mice, DI reduced the maximum decrease in lung compliance from 15.9 ± 1.5% to 5.6 ± 0.6% (<it>P </it>< 0.0001). This protective effect was even more pronounced in mice with chronic inflammation where DI attenuated maximum decrease in compliance from 44.1 ± 6.6% to 14.3 ± 1.3% (<it>P </it>< 0.001). DI largely prevented increased peripheral tissue damping (G) and tissue elastance (H) in both healthy (G and H both <it>P </it>< 0.0001) and chronic allergen-treated animals (G and H both <it>P </it>< 0.0001).</p> <p>Conclusion</p> <p>We have tested a mouse model of potential value for defining mechanisms and sites of action of DI in healthy and asthmatic human subjects. Our current results point to potent protective effects of DI on peripheral parts of chronically inflamed murine lungs and that the presence of DI may blunt airway hyperreactivity.</p

    LOFAR tied-array imaging and spectroscopy of solar S bursts

    Get PDF
    Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (&lt;100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims. Here, LOw Frequency ARray (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods. We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results. On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 h. S bursts were found to appear as groups of short-lived (&lt;1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz s-1 and a wide range of circular polarisation degrees (2−8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere. Conclusions. We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however, they possess some of the characteristics of electron-cyclotron maser emission

    LOFAR Sparse Image Reconstruction

    Get PDF
    Context. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by various deconvolution and minimization methods Aims. Recent papers have established a clear link between the discrete nature of radio interferometry measurement and the "compressed sensing" (CS) theory, which supports sparse reconstruction methods to form an image from the measured visibilities. Empowered by proximal theory, CS offers a sound framework for efficient global minimization and sparse data representation using fast algorithms. Combined with instrumental direction-dependent effects (DDE) in the scope of a real instrument, we developed and validated a new method based on this framework Methods. We implemented a sparse reconstruction method in the standard LOFAR imaging tool and compared the photometric and resolution performance of this new imager with that of CLEAN-based methods (CLEAN and MS-CLEAN) with simulated and real LOFAR data Results. We show that i) sparse reconstruction performs as well as CLEAN in recovering the flux of point sources; ii) performs much better on extended objects (the root mean square error is reduced by a factor of up to 10); and iii) provides a solution with an effective angular resolution 2-3 times better than the CLEAN images. Conclusions. Sparse recovery gives a correct photometry on high dynamic and wide-field images and improved realistic structures of extended sources (of simulated and real LOFAR datasets). This sparse reconstruction method is compatible with modern interferometric imagers that handle DDE corrections (A- and W-projections) required for current and future instruments such as LOFAR and SKAComment: Published in A&A, 19 pages, 9 figure

    Incidence of Tuberculosis amongst HIV positive individuals initiating antiretroviral treatment at higher CD4 counts in the HPTN 071 (PopART) trial in South Africa.

    Get PDF
    INTRODUCTION: Antiretroviral treatment (ART) guidelines recommend lifelong ART for all HIV positive individuals. This study evaluated TB incidence on ART in a cohort of HIV positive individuals starting ART regardless of CD4 count in a programmatic setting at three clinics included in the HPTN 071 (PopART) trial in South Africa. METHODS: A retrospective cohort analysis of HIV-positive individuals aged ≄18 years starting ART, between January 2014 and November 2015, was conducted. Follow up was continued until 30 May 2016 or censored on the date of i) incident TB ii) loss to follow up from HIV care or death or iii) elective transfer out; whichever occurred first. RESULTS: The study included 2423 individuals. Median baseline CD4 count was 328 cells/”L (IQR 195-468), TB incidence rate was 4.41/100 PY (95% CI 3.62-5.39). The adjusted hazard ratio of incident TB was 0.27 (95% CI 0.12 - 0.62) when comparing individuals with baseline CD4 > 500cells/”L and ≀ 500cells/”L. Amongst individuals with baseline CD4 count > 500cells/”L there were no incident TB cases in the first three months of follow up. Adjusted hazard of incident TB was also higher amongst men (aHR 2.16; 95% CI: 1.41 - 3.30). CONCLUSION: TB incidence after ART initiation was significantly lower amongst individuals starting ART at CD4 counts above 500cells/”L. Scale up of ART, regardless of CD4 count, has the potential to significantly reduce TB incidence amongst HIV-positive individuals. However, this needs to be combined with strengthening of other TB prevention strategies that target both HIV positive and HIV negative individuals

    Imaging Jupiter's radiation belts down to 127 MHz with LOFAR

    Get PDF
    Context. Observing Jupiter's synchrotron emission from the Earth remains today the sole method to scrutinize the distribution and dynamical behavior of the ultra energetic electrons magnetically trapped around the planet (because in-situ particle data are limited in the inner magnetosphere). Aims. We perform the first resolved and low-frequency imaging of the synchrotron emission with LOFAR at 127 MHz. The radiation comes from low energy electrons (~1-30 MeV) which map a broad region of Jupiter's inner magnetosphere. Methods (see article for complete abstract) Results. The first resolved images of Jupiter's radiation belts at 127-172 MHz are obtained along with total integrated flux densities. They are compared with previous observations at higher frequencies and show a larger extent of the synchrotron emission source (>=4 RJR_J). The asymmetry and the dynamic of east-west emission peaks are measured and the presence of a hot spot at lambda_III=230 {\deg} ±\pm 25 {\deg}. Spectral flux density measurements are on the low side of previous (unresolved) ones, suggesting a low-frequency turnover and/or time variations of the emission spectrum. Conclusions. LOFAR is a powerful and flexible planetary imager. The observations at 127 MHz depict an extended emission up to ~4-5 planetary radii. The similarities with high frequency results reinforce the conclusion that: i) the magnetic field morphology primarily shapes the brightness distribution of the emission and ii) the radiating electrons are likely radially and latitudinally distributed inside about 2 RJR_J. Nonetheless, the larger extent of the brightness combined with the overall lower flux density, yields new information on Jupiter's electron distribution, that may shed light on the origin and mode of transport of these particles.Comment: 10 pages, 12 figures, accepted for publication in A&A (27/11/2015) - abstract edited because of limited character

    First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256

    Get PDF
    Abell 2256 is one of the best known examples of a galaxy cluster hosting large-scale diffuse radio emission that is unrelated to individual galaxies. It contains both a giant radio halo and a relic, as well as a number of head-tail sources and smaller diffuse steep-spectrum radio sources. The origin of radio halos and relics is still being debated, but over the last years it has become clear that the presence of these radio sources is closely related to galaxy cluster merger events. Here we present the results from the first LOFAR Low band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our knowledge, the image presented in this paper at 63 MHz is the deepest ever obtained at frequencies below 100 MHz in general. Both the radio halo and the giant relic are detected in the image at 63 MHz, and the diffuse radio emission remains visible at frequencies as low as 20 MHz. The observations confirm the presence of a previously claimed ultra-steep spectrum source to the west of the cluster center with a spectral index of -2.3 \pm 0.4 between 63 and 153 MHz. The steep spectrum suggests that this source is an old part of a head-tail radio source in the cluster. For the radio relic we find an integrated spectral index of -0.81 \pm 0.03, after removing the flux contribution from the other sources. This is relatively flat which could indicate that the efficiency of particle acceleration at the shock substantially changed in the last \sim 0.1 Gyr due to an increase of the shock Mach number. In an alternative scenario, particles are re-accelerated by some mechanism in the downstream region of the shock, resulting in the relatively flat integrated radio spectrum. In the radio halo region we find indications of low-frequency spectral steepening which may suggest that relativistic particles are accelerated in a rather inhomogeneous turbulent region.Comment: 13 pages, 13 figures, accepted for publication in A\&A on April 12, 201
    • 

    corecore