49 research outputs found

    Permian high-temperature metamorphism in the Western Alps (NW Italy)

    Get PDF
    During the late Palaeozoic, lithospheric thinning in part of the Alpine realm caused high-temperature low-to-medium pressure metamorphism and partial melting in the lower crust. Permian metamorphism and magmatism has extensively been recorded and dated in the Central, Eastern, and Southern Alps. However, Permian metamorphic ages in the Western Alps so far are constrained by very few and sparsely distributed data. The present study fills this gap. We present U/Pb ages of metamorphic zircon from several Adria-derived continental units now situated in the Western Alps, defining a range between 286 and 266 Ma. Trace element thermometry yields temperatures of 580-890°C from Ti-in-zircon and 630-850°C from Zr-in-rutile for Permian metamorphic rims. These temperature estimates, together with preserved mineral assemblages (garnet-prismatic sillimanite-biotite-plagioclase-quartz-K-feldspar-rutile), define pervasive upper-amphibolite to granulite facies conditions for Permian metamorphism. U/Pb ages from this study are similar to Permian ages reported for the Ivrea Zone in the Southern Alps and Austroalpine units in the Central and Eastern Alps. Regional comparison across the former Adriatic and European margin reveals a complex pattern of ages reported from late Palaeozoic magmatic and metamorphic rocks (and relics thereof): two late Variscan age groups (~330 and ~300 Ma) are followed seamlessly by a broad range of Permian ages (300-250 Ma). The former are associated with late-orogenic collapse; in samples from this study these are weakly represented. Clearly, dominant is the Permian group, which is related to crustal thinning, hinting to a possible initiation of continental rifting along a passive margin

    Ductile strain rate measurements document long-term strain localization in the continental crust

    No full text
    cited By 24Quantification of strain localization in the continental lithosphere is hindered by the lack of reliable deformation rate measurements in the deep crust. Quartz-strain-rate-metry (QSR) is a convenient tool for performing such measurements once calibrated. We achieve this calibration by identifying the best piezometer-rheological law pairs that yield a strain rate in agreement with that measured on the same outcrop by a more direct method taken as a reference. When applied to two major continental strike-slip shear zones, the Ailao Shan-Red River (ASRR; southwest China) and the Karakorum (northwest India), the calibrated QSR highlights across-strike strain rate variations, from <1 × 10-15 s-1 in zones where strain is weak, to >1 × 10-13 s-1 in zones where it is localized. Strain rates integrated across the shear zones imply fast fault slip rates on the order of 1.1 cm yr-1 (Karakorum) and 4 cm yr-1 (ASRR), proving strong strain localization in these strike-slip continental shear zones. © 2013 Geological Society of America

    Thermal maturation and exhumation of a middle orogenic crust in the Livradois area (French Massif central)

    No full text
    Upper Carboniferous heating and melting of the middle orogenic crust associated with the emplacement of syntectonic granitoids are documented in the Upper Gneissic Unit of the Livradois area (central part of the French Massif Central). Crustal melting post-dates peak metamorphism conditions (800-625°C, 10-8 kb) dated at 360 ± 4 Ma (U-Th-Pb on monazite). The P-T evolution of the metamorphic series indicates that Barrovian metamorphism was followed by a decompression (from 10 ± 1 kbar to 6 ± 1 kbar) associated with either a decrease in temperature in the southern part of the series or with an increase in temperature (of about 150°C) in the northern part of the series. This evolution records the first step of the exhumation of the series coeval with granitoids intrusion, of which the emplacements were dated at 315 ± 4 and 311 ± 18 Ma (U-Pb on zircon). The final stage of the exhumation is associated with an isobaric cooling of the whole series. Similarity of 40Ar/39Ar ages for biotite in the paragneisses (307-300 Ma) and K-feldspar in the granitoids (306-300 Ma) document rapid cooling for this stage. Moreover dextral reverse mylonites, at the border and the northern part of the metamorphic series indicate north-south compression coeval with the unroofing of the series. Youngest 40Ar-39Ar ages on K-feldspar (274.6 ± 5 Ma) combined with normal shearing in mylonites limiting the Carboniferous Brassac-les-Mines basin document the late Carboniferous-early Permian stage of extension coeval with the upwelling of the Velay granitic dome

    Low P-T evolution of the continental crust exhumed during the Woodlark basin seafloor spreading system

    No full text
    Proceedings O.D.P., Sci. Results, leg 180, v. 180SR-178 [624], 2002International audienc

    When rainfall trapped in fluid inclusion restores the relief of an orogen: Insights from the Cenozoic Himalayas

    No full text
    International audienceThe involvement of meteoric water in orogens dynamics through surface processes is well known as for example in the Himalayas where erosion, resulting of the interplay between climate and tectonics shapes the most spectacular landscapes on the planet. But what about more internal and deepest surface fluid infiltration? Here we report analysis of the ÎŽ18O(water)and ÎŽD(water)of extracted water from fluid inclusions hosted into Cenozoic quartz veins sampled in the core of the Himalayan range, near the Main Central Thrust and the South Tibetan Detachment. Isotopic and microthermometric values suggest a meteoric origin for the fluids trapped in the quartz of syn-to post-kinematic veins formed between 10 to 20 km depth. Moreover, the isotopic compositions obtained in this study on quartz fluid inclusions water collected along a transect across the Himalayan range evolved with the topography in a similar manner than the modern meteoric water. Considering the age of formation of the quartz veins between 18 and 12 Ma, we deduce that the morphology of the Himalayan topographic front was already shaped during the Miocene but located further north

    Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth

    No full text
    International audienceEarth's continental crust is dominantly made of buoyant, felsic igneous material (granitoids), that were ultimately extracted from the mantle as a result of Earth's differentiation. Since felsic melts are not in chemical equilibrium with the mantle, they can originate either from melting of older crustal lithologies, or from differentiation of a primitive mantle melt; only the latter case will contribute to crustal growth. To understand the mechanisms of continental crust growth and differentiation through time, it is therefore necessary to unravel the respective contribution of these two different mechanisms in the genesis of granitoid suites. In modern Earth, granitoids are chiefly generated in convergent plate boundaries (subduction and collision). This paper examines the granitic suites in a late-collision environment, the Variscan French Massif Central (FMC), and compares them with the suites found in an oceanic arc. We therefore describe, and compare, two end-members sites of granite generation.In the FMC, several main types of granites are described. Muscovite and Cordierite bearing Peraluminous Granites (resp. MPG and CPG) contain large amounts of inherited zircons, and their chemistry demonstrates that their sources were older crustal material (resp. Metasediments and metaigneous). On the other hand, Potassic Calc-alkaline Granites (KCG), associated to potassic diorites (vaugnerites) do not contain inherited zircons, and ultimately derive from the vaugnerites. The vaugnerites in turns form by partial melting of a mantle contaminated by the regional crust. Therefore, although they are isotopically similar to the crust, the KCG are net contributors to crustal growth. Thus we conclude that although late-orogenic settings are dominated by crustal melting and recycling, they may be sites of net crustal growth, even though this is not visible from isotopes only. In contrast, arc granitoids are purely or almost purely mantle derived. However, the preservation potential of arcs is much smaller than the preservation of late-orogenic domains, such that at the scale of a whole orogenic belt, late-orogenic magmatism is probably as important as arc magmatism.Finally, we speculate that the situation may have been similar in the Archaean, or even more skewed towards late-orogenic sites (or similar environments, dominated by melting of a altered mafic protocrust), owing to the hotter mantle and less stable subductions during that period

    Spike-based beamforming using pMUT arrays for ultra-low power gesture recognition

    No full text
    International audienceSensor arrays constrain the power budget of battery-powered smart sensor as the analogue front-end (AFE), analogue-to-digital conversion (ADC) and digital signal processing is duplicated for each channel. By converting and processing the relevant information in the spiking domain, the energy consumption can be reduced by several orders of magnitude. We propose the first end-to-end ultra-low power Gesture Recognition (GR) system comprising an array of emitting and receiving piezoelectric micromachined ultrasonic transducers (pMUT), driving/sensing electronics, a novel spike-based beamforming strategy to extract the distance and angle information from incoming echoes without conventional ADCs and a Spiking Recurrent Neural Network (SRNN) for the GR. We experimentally demonstrate a classification accuracy of 86.0% on a dataset of five 3D gestures collected on our experimental setup

    Two‐stage Variscan metamorphism in the Canigou massif: evidence for crustal thickening in the Pyrenees

    No full text
    International audienceThe Variscan metamorphism in the Pyrenees is dominantly of the low-pressure-high-temperature (LP-HT) type. The relics of an earlier, Barrovian-type, metamorphism that could be related to orogenic crustal thickening are unclear and insufficiently constrained. A microstructural and petrological study of micaschists underlying an Ordovician augen orthogneiss in the core of the Canigou massif (Eastern Pyrenees, France) reveal the presence of two syntectonic metamorphic stages characterized by the crystallization of staurolite (M1) and andalusite (M2), respectively. Garnet is stable during the two metamorphic stages with a period of resorption between M1 and M2. The metamorphic assemblages M1 and M2 record similar peak temperatures of 580 °C at different pressure conditions of 5.5 kbar and 3 kbar, respectively. Using chemical zoning of garnet and calculated P–T pseudosections, a prograde P–T path is constrained with a peak pressure at ~6.5 kbar and 550 °C. This P–T path, syntectonic with respect to the first foliation S1, corresponds to a cold gradient (of ~9 °C/km), suggestive of crustal thickening. Resorption of garnet between M1 and M2 can be interpreted either in terms of a simple clockwise P–T path or a polymetamorphic two stage evolution. We argue in favour of the latter, where the medium‐pressure (Barrovian) metamorphism is followed by a period of significant erosion and crustal thinning leading to decompression and cooling. Subsequent advection of heat, probably from the mantle, lead to a new increase in temperature, coeval with the development of the main regional fabric S2. LA‐ICP‐MS U‐Th‐Pb dating of monazite yields a well‐defined date at c. 300 Ma. Petrological evidence indicates that monazite crystallization took place close to the M1 peak‐pressure conditions. However, the similarity between this age and that of the extensive magmatic event well documented in the eastern Pyrenees suggests that it probably corresponds to the age of monazite recrystallization during the M2 LP–HT event. This article is protected by copyright. All rights reserved
    corecore