42 research outputs found

    Paternal age explains a major portion of de novo germline mutation rate variability in healthy individuals

    Get PDF
    De novo mutations (DNM) are an important source of rare variants and are increasingly being linked to the development of many diseases. Recently, the paternal age effect has been the focus of a number of studies that attempt to explain the observation that increasing paternal age increases the risk for a number of diseases. Using disease-free familial quartets we show that there is a strong positive correlation between paternal age and germline DNM in healthy subjects. We also observed that germline CNVs do not follow the same trend, suggesting a different mechanism. Finally, we observed that DNM were not evenly distributed across the genome, which adds support to the existence of DNM hotspots

    The role of the melanoma gene MC1R in Parkinson disease and REM sleep behavior disorder

    Get PDF
    The MC1R gene, suggested to be involved in Parkinson disease (PD) and melanoma, was sequenced in PD patients (n=539) and controls (n=265) from New-York, and PD patients (n=551), rapid eye movement sleep behavior disorder (RBD) patients (n=351) and controls (n=956) of European ancestry. Sixty-eight MC1R variants were identified, including 7 common variants with frequency>0.01. None of the common variants was associated with PD or RBD in the different regression models. In a meta-analysis with fixed-effect model, the p.R160W variant was associated with an increased risk for PD (OR=1.22, 95%CI 1.02-1.47, p=0.03) but with significant heterogeneity (p=0.048). Removing one study that introduced the heterogeneity resulted in nonsignificant association (OR=1.11, 95%CI 0.92-1.35, p=0.27, heterogeneity p=0.57). Rare variants had similar frequencies in patients and controls (10.54% and 10.15%, respectively, p=0.75), and no cumulative effect of carrying more than one MC1R variant was found. The current study does not support a role for the MC1R p.R160W and other variants in susceptibility for PD or RBD

    LINGO1 Variants in the French-Canadian Population

    Get PDF
    Essential tremor (ET) is a complex genetic disorder for which no causative gene has been found. Recently, a genome-wide association study reported that two variants in the LINGO1 locus were associated to this disease. The aim of the present study was to test if this specific association could be replicated using a French-Canadian cohort of 259 ET patients and 479 ethnically matched controls. Our genotyping results lead us to conclude that no association exists between the key variant rs9652490 and ET (Pcorr = 1.00)

    Increased missense mutation burden of Fatty Acid metabolism related genes in nunavik inuit population.

    No full text
    Nunavik Inuit (northern Quebec, Canada) reside along the arctic coastline where for generations their daily energy intake has mainly been derived from animal fat. Given this particular diet it has been hypothesized that natural selection would lead to population specific allele frequency differences and unique variants in genes related to fatty acid metabolism. A group of genes, namely CPT1A, CPT1B, CPT1C, CPT2, CRAT and CROT, encode for three carnitine acyltransferases that are important for the oxidation of fatty acids, a critical step in their metabolism.Exome sequencing and SNP array genotyping were used to examine the genetic variations in the six genes encoding for the carnitine acyltransferases in 113 Nunavik Inuit individuals.Altogether ten missense variants were found in genes CPT1A, CPT1B, CPT1C, CPT2 and CRAT, including three novel variants and one Inuit specific variant CPT1A p.P479L (rs80356779). The latter has the highest frequency (0.955) compared to other Inuit populations. We found that by comparison to Asians or Europeans, the Nunavik Inuit have an increased mutation burden in CPT1A, CPT2 and CRAT; there is also a high level of population differentiation based on carnitine acyltransferase gene variations between Nunavik Inuit and Asians.The increased number and frequency of deleterious variants in these fatty acid metabolism genes in Nunavik Inuit may be the result of genetic adaptation to their diet and/or the extremely cold climate. In addition, the identification of these variants may help to understand some of the specific health risks of Nunavik Inuit

    The role of the melanoma gene MC1R in Parkinson disease and REM sleep behavior disorder

    No full text
    The MC1R gene, suggested to be involved in Parkinson disease (PD) and melanoma, was sequenced in PD patients (n = 539) and controls (n = 265) from New York, and PD patients (n = 551), rapid eye movement sleep behavior disorder (RBD) patients (n = 351), and controls (n = 956) of European ancestry. Sixty-eight MC1R variants were identified, including 7 common variants with frequency > 0.01. None of the common variants was associated with PD or RBD in the different regression models. In a meta-analysis with fixed-effect model, the p.R160W variant was associated with an increased risk for PD (odds ratio = 1.22, 95% confidence interval = 1.02–1.47, p = 0.03) but with significant heterogeneity (p = 0.048). Removing one study that introduced the heterogeneity resulted in nonsignificant association (odds ratio = 1.11, 95% confidence interval, 0.92–1.35, p = 0.27, heterogeneity p = 0.57). Rare variants had similar frequencies in patients and controls (10.54% and 10.15%, respectively, p = 0.75), and no cumulative effect of carrying more than one MC1R variant was found. The present study does not support a role for the MC1R p.R160W and other variants in susceptibility for PD or RBD

    The role of the melanoma gene MC1R in Parkinson disease and REM sleep behavior disorder

    No full text
    The MC1R gene, suggested to be involved in Parkinson disease (PD) and melanoma, was sequenced in PD patients (n = 539) and controls (n = 265) from New York, and PD patients (n = 551), rapid eye movement sleep behavior disorder (RBD) patients (n = 351), and controls (n = 956) of European ancestry. Sixty-eight MC1R variants were identified, including 7 common variants with frequency > 0.01. None of the common variants was associated with PD or RBD in the different regression models. In a meta-analysis with fixed-effect model, the p.R160W variant was associated with an increased risk for PD (odds ratio = 1.22, 95% confidence interval = 1.02–1.47, p = 0.03) but with significant heterogeneity (p = 0.048). Removing one study that introduced the heterogeneity resulted in nonsignificant association (odds ratio = 1.11, 95% confidence interval, 0.92–1.35, p = 0.27, heterogeneity p = 0.57). Rare variants had similar frequencies in patients and controls (10.54% and 10.15%, respectively, p = 0.75), and no cumulative effect of carrying more than one MC1R variant was found. The present study does not support a role for the MC1R p.R160W and other variants in susceptibility for PD or RBD

    Mutation Burden of Rare Variants in Schizophrenia Candidate Genes

    Get PDF
    <div><p>Background</p><p>Schizophrenia (SCZ) is a very heterogeneous disease that affects approximately 1% of the general population. Recently, the genetic complexity thought to underlie this condition was further supported by three independent studies that identified an increased number of damaging <i>de novo</i> mutations DNM in different SCZ probands. While these three reports support the implication of DNM in the pathogenesis of SCZ, the absence of overlap in the genes identified suggests that the number of genes involved in SCZ is likely to be very large; a notion that has been supported by the moderate success of Genome-Wide Association Studies (GWAS).</p><p>Methods</p><p>To further examine the genetic heterogeneity of this disease, we resequenced 62 genes that were found to have a DNM in SCZ patients, and 40 genes that encode for proteins known to interact with the products of the genes with DNM, in a cohort of 235 SCZ cases and 233 controls.</p><p>Results</p><p>We found an enrichment of private nonsense mutations amongst schizophrenia patients. Using a kernel association method, we were able to assess for association for different sets. Although our power of detection was limited, we observed an increased mutation burden in the genes that have DNM.</p></div

    Genome-wide association study identifies genetic factors that modify age at onset in Machado-Joseph disease

    Get PDF
    Machado-Joseph disease (MJD/SCA3) is the most common form of dominantly inherited ataxia worldwide. The disorder is caused by an expanded CAG repeat in the ATXN3 gene. Past studies have revealed that the length of the expansion partly explains the disease age at onset (AO) variability of MJD, which is confirmed in this study (Pearson’s correlation coefficient R2 = 0.62). Using a total of 786 MJD patients from five different geographical origins, a genome-wide association study (GWAS) was conducted to identify additional AO modifying factors that could explain some of the residual AO variability. We identified nine suggestively associated loci (P < 1 × 10−5). These loci were enriched for genes involved in vesicle transport, olfactory signaling, and synaptic pathways. Furthermore, associations between AO and the TRIM29 and RAG genes suggests that DNA repair mechanisms might be implicated in MJD pathogenesis. Our study demonstrates the existence of several additional genetic factors, along with CAG expansion, that may lead to a better understanding of the genotype-phenotype correlation in MJD
    corecore