446 research outputs found

    Large-scale risk analysis in the Arno river basin (Italy)

    Get PDF
    We present the methodologies adopted and the outcomes obtained in the analysis of landslide risk in the basin of the Arno River (Central Italy) in the framework of a project sponsored by the Basin Authority of the Arno River, started in the year 2002 and completed at the beginning of 2005. A new landslide inventory of the whole area was realized, using conventional (aerialphoto interpretation and field surveys) and non-conventional methods (e.g. remote sensing techniques such as DInSAR and PS-InSAR). The great majority of the mapped mass movements are rotational slides (75%), solifluctions and other shallow slow movements (17%) and flows (5%), while soil slips, and other rapid landslides, seem less frequent everywhere within the basin. The assessment of landslide hazard in terms of probability of occurrence in a given time, based for mapped landslides on direct and indirect observations of the state of activity and recurrence time, has been extended to landslide-free areas through the application of statistical methods implemented in an artificial neural network (ANN). Unique conditions units (UCU) were defined by the map overlay of landslide preparatory factors (lithology, land cover, slope gradient, slope curvature and upslope contributing area) and afterwards used to construct a series of model vectors for the training and test of the ANN. Model validation confirms that prediction results are very good, with an average percentage of correctly recognized mass movements of about 85%. The analysis also revealed the existence of a large number of unmapped mass movements, thus contributing to the completeness of the final inventory. Temporal hazard was estimated via the translation of state of activity in recurrence time and hence probability of occurrence. The definition of position, typology and characteristics of the elements at risk has been carried out with two different methodologies, partially derived from the “Plans d’Exposition au Risque” proposed in France: i) buildings and infrastructures were directly extracted from digital terrain cartography at the 1:10,000 scale, whilst ii) nonurban land use was identified and mapped based on an updated and improved CORINE land cover map at the 1:50,000 scale. The definition of the exposure of the elements at risk relies upon contingent valuation methods and form-based interviews. Landslide intensity, usually defined as proportional to kinetic energy, was obtained considering landslide typology as a proxy for expected velocity. In the case of the Arno River Basin the definition of intensity is influenced by the fact that the large majority of mass movements are deep-seated reactivated slides evolving into flows. Two main cases were so considered: deep-seated rotational slides and shallow flows or planar slides with virtually constant depth. In the latter case, intensity as a function of volume was set proportional to the area of the mapped phenomenon. In the former case, a simple geometric model was used to compute the volume. Intersection of hazard values with vulnerability and exposure figures, obtained by reclassification of digital vector mapping at 1:10,000 scale, lead to the definition of risk values for each terrain unit for different periods of time into the future. Numerical results indicate that in absence of mitigation measures, large economic losses must be expected due to landslide activity in the few next years. The final results of the research are now undergoing a process of integration and implementation within land planning and risk prevention policies and practices at local and national level

    Amine-Rich Carbon Dots as Novel Nano-Aminocatalytic Platforms in Organic Synthesis

    Get PDF
    The development of novel and effective metal-free catalytic systems, which can drive value-added organic transformations in environmentally benign solvents (for instance, water), is highly desirable. Moreover, these new catalysts need to be harmless, easy-to-prepare, and potentially recyclable. In this context, amine-rich carbon dots (CDs) have recently emerged as promising nano-catalytic platforms. These nitrogen-doped nanoparticles, which show dimensions smaller than 10 nm, generally consist of carbon cores that are surrounded by shells containing numerous amino groups. In recent years, organic chemists have used these surface amines to guide the design of several synthetic methodologies under mild operative conditions. This Concept highlights the recent advances in the synthesis of amine-rich carbon dots and their applications in organic catalysis, including forward-looking opportunities within this research field

    Analisi della suscettibilità da frana a scala di bacino (Bacino del Fiume Arno, Toscana-Umbria, Italia)

    Get PDF
    In questa nota vengono presentati i metodi applicati e i risultati ottenuti in una recente analisi della pericolosità da frana, condotta sul territorio del Bacino del Fiume Arno nell’ambito di una convenzione tra l’Autorità di Bacino e il Dipartimento di Scienze della Terra dell’Università di Firenze (2002-2005). Tutti i dati acquisiti, confluiti in una banca dati GIS, sono stati sintetizzati in carte tematiche e in una carta inventario delle frane. La sovrapposizione dei fattori predisponenti selezionati (pendenza, litologia, uso del suolo, curvatura di profilo e area drenata) ha permesso di definire le unità elementari per il trattamento statistico (Unità Territoriali Omogenee: UTO). La valutazione della pericolosità è stata estesa alle aree prive di movimenti franosi utilizzando metodi statistici multivariati implementati in Reti Neurali Artificiali. L’area di studio è stata suddivisa in cinque Macroaree morfologicamente e geologicamente omogenee: per ogni Macroarea, i predittori neurali sono stati addestrati su un opportuno sottoinsieme di dati, applicando poi i migliori all’intero data-set al fine di generare valori previsti dell’indice di suscettibilità per ogni UTO. Infine, i valori di uscita sono stati riclassificati in differenti livelli di pericolosità in base a criteri di soglia e validati per confronto con l’inventario. Una percentuale di area in frana compresa tra l’81 e il 96% risulta correttamente classificata dalla previsione nelle varie Macroare

    Global potential energy surface for the O2 + N2 interaction. Applications to the collisional, spectroscopic, and thermodynamic properties of the complex

    Get PDF
    A detailed characterization of the interaction between the most abundant molecules in air is important for the understanding of a variety of phenomena in atmospherical science. A completely {\em ab initio} global potential energy surface (PES) for the O2(3Σg)_2(^3\Sigma^-_g) + N2(1Σg+)_2(^1\Sigma^+_g) interaction is reported for the first time. It has been obtained with the symmetry-adapted perturbation theory utilizing a density functional description of monomers [SAPT(DFT)] extended to treat the interaction involving high-spin open-shell complexes. The computed interaction energies of the complex are in a good agreement with those obtained by using the spin-restricted coupled cluster methodology with singles, doubles and noniterative triple excitations [RCCSD(T)]. A spherical harmonics expansion containing a large number of terms due to the anisotropy of the interaction has been built from the {\em ab initio} data. The radial coefficients of the expansion are matched in the long range with the analytical functions based on the recent {\em ab initio} calculations of the electric properties of the monomers [M. Bartolomei et al., J. Comp. Chem., {\bf 32}, 279 (2011)]. The PES is tested against the second virial coefficient B(T)B(T) data and the integral cross sections measured with rotationally hot effusive beams, leading in both cases to a very good agreement. The first bound states of the complex have been computed and relevant spectroscopic features of the interacting complex are reported. A comparison with a previous experimentally derived PES is also provided

    Hypoperfusion of brain parenchyma is associated with the severity of chronic cerebrospinal venous insufficiency in patients with multiple sclerosis: a cross-sectional preliminary report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have reported hypoperfusion of the brain parenchyma in multiple sclerosis (MS) patients. We hypothesized a possible relationship between abnormal perfusion in MS and hampered venous outflow at the extracranial level, a condition possibly associated with MS and known as chronic cerebrospinal venous insufficiency (CCSVI).</p> <p>Methods</p> <p>We investigated the relationship between CCSVI and cerebral perfusion in 16 CCSVI MS patients and 8 age- and sex-matched healthy controls. Subjects were scanned in a 3-T scanner using dynamic susceptibility, contrast-enhanced, perfusion-weighted imaging. Cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) were measured in the gray matter (GM), white matter (WM) and the subcortical GM (SGM). The severity of CCSVI was assessed according to the venous hemodynamic insufficiency severity score (VHISS) on the basis of the number of venous segments exhibiting flow abnormalities.</p> <p>Results</p> <p>There was a significant association between increased VHISS and decreased CBF in the majority of examined regions of the brain parenchyma in MS patients. The most robust correlations were observed for GM and WM (<it>r </it>= -0.70 to -0.71, <it>P </it>< 0.002 and <it>P </it>corrected = 0.022), and for the putamen, thalamus, pulvinar nucleus of thalamus, globus pallidus and hippocampus (<it>r </it>= -0.59 to -0.71, <it>P </it>< 0.01 and <it>P </it>corrected < 0.05). No results for correlation between VHISS and CBV or MTT survived multiple comparison correction.</p> <p>Conclusions</p> <p>This pilot study is the first to report a significant relationship between the severity of CCSVI and hypoperfusion in the brain parenchyma. These preliminary findings should be confirmed in a larger cohort of MS patients to ensure that they generalize to the MS population as a whole. Reduced perfusion could contribute to the known mechanisms of virtual hypoxia in degenerated axons.</p

    Quantification of Myocardial Contraction Fraction with Three-Dimensional Automated, Machine-Learning-Based Left-Heart-Chamber Metrics: Diagnostic Utility in Hypertrophic Phenotypes and Normal Ejection Fraction

    Get PDF
    Aims: The differentiation of left ventricular (LV) hypertrophic phenotypes is challenging in patients with normal ejection fraction (EF). The myocardial contraction fraction (MCF) is a simple dimensionless index useful for specifically identifying cardiac amyloidosis (CA) and hypertrophic cardiomyopathy (HCM) when calculated by cardiac magnetic resonance. The purpose of this study was to evaluate the value of MCF measured by three-dimensional automated, machine-learning-based LV chamber metrics (dynamic heart model [DHM]) for the discrimination of different forms of hypertrophic phenotypes. Methods and Results: We analyzed the DHM LV metrics of patients with CA (n = 10), hypertrophic cardiomyopathy (HCM, n = 36), isolated hypertension (IH, n = 87), and 54 healthy controls. MCF was calculated by dividing LV stroke volume by LV myocardial volume. Compared with controls (median 61.95%, interquartile range 55.43–67.79%), mean values for MCF were significantly reduced in HCM—48.55% (43.46–54.86% p &lt; 0.001)—and CA—40.92% (36.68–46.84% p &lt; 0.002)—but not in IH—59.35% (53.22–64.93% p &lt; 0.7). MCF showed a weak correlation with EF in the overall cohort (R2 = 0.136) and the four study subgroups (healthy adults, R2 = 0.039 IH, R2 = 0.089; HCM, R2 = 0.225; CA, R2 = 0.102). ROC analyses showed that MCF could differentiate between healthy adults and HCM (sensitivity 75.9%, specificity 77.8%, AUC 0.814) and between healthy adults and CA (sensitivity 87.0%, specificity 100%, AUC 0.959). The best cut-off values were 55.3% and 52.8%. Conclusions: The easily derived quantification of MCF by DHM can refine our echocardiographic discrimination capacity in patients with hypertrophic phenotype and normal EF. It should be added to the diagnostic workup of these patients

    The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    Get PDF
    Purpose In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activity compared to healthy controls and that particularly global slowing correlates with neurocognitive dysfunction. Patient and methods Resting state MEG recordings were obtained from 17 LGG patients and 17 age-, sex-, and education-matched healthy controls. Relative spectral power was calculated in the delta, theta, upper and lower alpha, beta, and gamma frequency band. A battery of standardized neurocognitive tests measuring 6 neurocognitive domains was administered. Results LGG patients showed a slowing of the resting state brain activity when compared to healthy controls. Decrease in relative power was mainly found in the gamma frequency band in the bilateral frontocentral MEG regions, whereas an increase in relative power was found in the theta frequency band in the left parietal region. An increase of the relative power in the theta and lower alpha band correlated with impaired executive functioning, information processing, and working memory. Conclusion LGG patients are characterized by global slowing of their resting state brain activity and this slowing phenomenon correlates with the observed neurocognitive deficits

    A large ongoing outbreak of hepatitis A predominantly affecting young males in Lazio, Italy; August 2016 - March 2017

    Get PDF
    The hepatitis A virus (HAV) is mainly transmitted through the faecal-oral route. In industrialized countries HAV infection generally occurs as either sporadic cases in travelers from endemic areas, local outbreak within closed/semi-closed population and as foodborne community outbreak. Recently, an increasing number of HAV infection clusters have been reported among young men-who-have-sex-with-men (MSM). The Lazio Regional Service for the epidemiology and control for infectious diseases (SeRESMI) has noticed an increase of acute hepatitis A (AHA) since September 2016. Temporal analysis carried out with a discrete Poisson model using surveillance data between January 2016 and March 2017 evidenced an ongoing outbreak of AHA that started at the end of August. Molecular investigation carried out on 130 out of 513 cases AHA reported until March 2017 suggests that this outbreak is mainly supported by an HAV variant which is currently spreading within MSM communities across Europe (VRD_521_2016). The report confirms that AHA is an emerging issue among MSM. In addition through the integration of standard (case based) surveillance with molecular investigation we could discriminate, temporally concomitant but epidemiologically unrelated, clusters due to different HAV variants. As suggested by the WHO, in countries with low HAV circulation, vaccination programmes should be tailored on the local epidemiological patterns to prevent outbreaks among high risk groups and eventual spillover of the infection in the general population

    A large ongoing outbreak of hepatitis A predominantly affecting young males in Lazio, Italy; August 2016 - March 2017

    Get PDF
    The hepatitis A virus (HAV) is mainly transmitted through the faecal-oral route. In industrialized countries HAV infection generally occurs as either sporadic cases in travelers from endemic areas, local outbreak within closed/semi-closed population and as foodborne community outbreak. Recently, an increasing number of HAV infection clusters have been reported among young men-who-have-sex-with-men (MSM). The Lazio Regional Service for the epidemiology and control for infectious diseases (SeRESMI) has noticed an increase of acute hepatitis A (AHA) since September 2016. Temporal analysis carried out with a discrete Poisson model using surveillance data between January 2016 and March 2017 evidenced an ongoing outbreak of AHA that started at the end of August. Molecular investigation carried out on 130 out of 513 cases AHA reported until March 2017 suggests that this outbreak is mainly supported by an HAV variant which is currently spreading within MSM communities across Europe (VRD_521_2016). The report confirms that AHA is an emerging issue among MSM. In addition through the integration of standard (case based) surveillance with molecular investigation we could discriminate, temporally concomitant but epidemiologically unrelated, clusters due to different HAV variants. As suggested by the WHO, in countries with low HAV circulation, vaccination programmes should be tailored on the local epidemiological patterns to prevent outbreaks among high risk groups and eventual spillover of the infection in the general population

    The Borexino detector at the Laboratori Nazionali del Gran Sasso

    Full text link
    Borexino, a large volume detector for low energy neutrino spectroscopy, is currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. The main goal of the experiment is the real-time measurement of sub MeV solar neutrinos, and particularly of the mono energetic (862 keV) Be7 electron capture neutrinos, via neutrino-electron scattering in an ultra-pure liquid scintillator. This paper is mostly devoted to the description of the detector structure, the photomultipliers, the electronics, and the trigger and calibration systems. The real performance of the detector, which always meets, and sometimes exceeds, design expectations, is also shown. Some important aspects of the Borexino project, i.e. the fluid handling plants, the purification techniques and the filling procedures, are not covered in this paper and are, or will be, published elsewhere (see Introduction and Bibliography).Comment: 37 pages, 43 figures, to be submitted to NI
    corecore