51 research outputs found
Calibration and Characterization of the IceCube Photomultiplier Tube
Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube
neutrino observatory. Many are placed deep in the ice to detect Cherenkov light
emitted by the products of high-energy neutrino interactions, and others are
frozen into tanks on the surface to detect particles from atmospheric cosmic
ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu
Photonics. This paper describes the laboratory characterization and calibration
of these PMTs before deployment. PMTs were illuminated with pulses ranging from
single photons to saturation level. Parameterizations are given for the single
photoelectron charge spectrum and the saturation behavior. Time resolution,
late pulses and afterpulses are characterized. Because the PMTs are relatively
large, the cathode sensitivity uniformity was measured. The absolute photon
detection efficiency was calibrated using Rayleigh-scattered photons from a
nitrogen laser. Measured characteristics are discussed in the context of their
relevance to IceCube event reconstruction and simulation efforts.Comment: 40 pages, 12 figure
The IceCube Neutrino Observatory: Instrumentation and Online Systems
The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy
neutrino detector built into the ice at the South Pole. Construction of
IceCube, the largest neutrino detector built to date, was completed in 2011 and
enabled the discovery of high-energy astrophysical neutrinos. We describe here
the design, production, and calibration of the IceCube digital optical module
(DOM), the cable systems, computing hardware, and our methodology for drilling
and deployment. We also describe the online triggering and data filtering
systems that select candidate neutrino and cosmic ray events for analysis. Due
to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are
operating and collecting data. IceCube routinely achieves a detector uptime of
99% by emphasizing software stability and monitoring. Detector operations have
been stable since construction was completed, and the detector is expected to
operate at least until the end of the next decade.Comment: 83 pages, 50 figures; updated with minor changes from journal review
and proofin
Measurement of acoustic attenuation in South Pole ice
Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient α = 3.20 ± 0.57 km−1 between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for λ ≡ 1/α of ∼300 m with 20% uncertainty. No significant depth or frequency dependence has been found
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
4to. Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad. Memoria académica
Este volumen acoge la memoria académica de la Cuarta edición del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad, CITIS 2017, desarrollado entre el 29 de noviembre y el 1 de diciembre de 2017 y organizado por la Universidad Politécnica Salesiana (UPS) en su sede de Guayaquil.
El Congreso ofreció un espacio para la presentación, difusión e intercambio de importantes investigaciones nacionales e internacionales ante la comunidad universitaria que se dio cita en el encuentro. El uso de herramientas tecnológicas para la gestión de los trabajos de investigación como la plataforma Open Conference Systems y la web de presentación del Congreso http://citis.blog.ups.edu.ec/, hicieron de CITIS 2017 un verdadero referente entre los congresos que se desarrollaron en el país.
La preocupación de nuestra Universidad, de presentar espacios que ayuden a generar nuevos y mejores cambios en la dimensión humana y social de nuestro entorno, hace que se persiga en cada edición del evento la presentación de trabajos con calidad creciente en cuanto a su producción científica.
Quienes estuvimos al frente de la organización, dejamos plasmado en estas memorias académicas el intenso y prolífico trabajo de los días de realización del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad al alcance de todos y todas
Decoding the historical tale: COVID-19 impact on haematological malignancy patients-EPICOVIDEHA insights from 2020 to 2022
The COVID-19 pandemic heightened risks for individuals with hematological malignancies due to compromised immune systems, leading to more severe outcomes and increased mortality. While interventions like vaccines, targeted antivirals, and monoclonal antibodies have been effective for the general population, their benefits for these patients may not be as pronounced.Peer reviewe
- …