11 research outputs found
Trypanosoma Brucei Aquaglyceroporins Facilitate the Uptake of Arsenite and Antimonite in a pH Dependent Way
Background: Trypanosoma brucei is a primitive parasitic protozoan that thrives in diverse environments such as the midgut of the tsetse fly and the blood of a mammalian host. For an adequate adaptation to these environments, the parasite´s aquaglyceroporins play an important role. Methods and Results: In order to test their ability to transport trivalent arsenic and antimony, we expressed the three known Trypanosoma brucei aquaglyceroporins (TbAQPs) in the heterologous systems of yeast null aquaporin mutant and Xenopus laevis oocytes. For both expression systems, we found a pH dependent intracellular accumulation of As(III) or Sb(III) mediated by all of the three TbAQPs, with the exception of TbAQP1-As(III) uptake. Additionally, we observed that Trypanosoma brucei aquaglyceroporins allow the passage of As(III) in both directions. Conclusion: Taken together, these results demonstrated that T. brucei aquaglyceroporins can serve as entry routes for As(III) and Sb(III) into the parasitic cell, and that this uptake is pH sensitive. Therefore, aquaporins of protozoan parasites may be considered useful as a vehicle for drug delivery
Antiproliferative Effect of Dihydroxyacetone on Trypanosoma brucei Bloodstream Forms: Cell Cycle Progression, Subcellular Alterations, and Cell Death▿
We evaluated the effects of dihydroxyacetone (DHA) on Trypanosoma brucei bloodstream forms. DHA is considered an energy source for many different cell types. T. brucei takes up DHA readily due to the presence of aquaglyceroporins. However, the parasite is unable to use it as a carbon source because of the absence of DHA kinase (DHAK). We could not find a homolog of the relevant gene in the genomic database of T. brucei and have been unable to detect DHAK activity in cell lysates of the parasite, and the parasite died quickly if DHA was the sole energy source in the medium. In addition, during trypanosome cultivation, DHA induced growth inhibition with a 50% inhibitory concentration of about 1 mM, a concentration that is completely innocuous to mammals. DHA caused cell cycle arrest in the G2/M phase of up to 70% at a concentration of 2 mM. Also, DHA-treated parasites showed profound ultrastructural alterations, including an increase of vesicular structures within the cytosol and the presence of multivesicular bodies, myelin-like structures, and autophagy-like vacuoles, as well as a marked disorder of the characteristic mitochondrion structure. Based on the toxicity of DHA for trypanosomes compared with mammals, we consider DHA a starting point for a rational design of new trypanocidal drugs
Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes.
Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response
Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes
Research in autophagy continues to accelerate, and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose. There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes.
Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response