29 research outputs found

    PiGx: reproducible genomics analysis pipelines with GNU Guix

    Get PDF
    In bioinformatics, as well as other computationally intensive research fields, there is a need for workflows that can reliably produce consistent output, from known sources, independent of the software environment or configuration settings of the machine on which they are executed. Indeed, this is essential for controlled comparison between different observations and for the wider dissemination of workflows. However, providing this type of reproducibility and traceability is often complicated by the need to accommodate the myriad dependencies included in a larger body of software, each of which generally comes in various versions. Moreover, in many fields (bioinformatics being a prime example), these versions are subject to continual change due to rapidly evolving technologies, further complicating problems related to reproducibility. Here, we propose a principled approach for building analysis pipelines and managing their dependencies with GNU Guix. As a case study to demonstrate the utility of our approach, we present a set of highly reproducible pipelines called PiGx for the analysis of RNA sequencing, chromatin immunoprecipitation sequencing, bisulfite-treated DNA sequencing, and single-cell resolution RNA sequencing. All pipelines process raw experimental data and generate reports containing publication-ready plots and figures, with interactive report elements and standard observables. Users may install these highly reproducible packages and apply them to their own datasets without any special computational expertise beyond the use of the command line. We hope such a toolkit will provide immediate benefit to laboratory workers wishing to process their own datasets or bioinformaticians seeking to automate all, or parts of, their analyses. In the long term, we hope our approach to reproducibility will serve as a blueprint for reproducible workflows in other areas. Our pipelines, along with their corresponding documentation and sample reports, are available at http://bioinformatics.mdc-berlin.de/pigx Document type: Articl

    The conserved histone chaperone LIN-53 is required for normal lifespan and maintenance of muscle integrity in Caenorhabditis elegans.

    Get PDF
    Whether extension of lifespan provides an extended time without health deteriorations is an important issue for human aging. However, to which degree lifespan and aspects of healthspan regulation might be linked is not well understood. Chromatin factors could be involved in linking both aging aspects, as epigenetic mechanisms bridge regulation of different biological processes. The epigenetic factor LIN-53 (RBBP4/7) associates with different chromatin-regulating complexes to safeguard cell identities in Caenorhabditis elegans as well as mammals, and has a role in preventing memory loss and premature aging in humans. We show that LIN-53 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in C. elegans muscles to ensure functional muscles during postembryonic development and in adults. While mutants for other NuRD members show a normal lifespan, animals lacking LIN-53 die early because LIN-53 depletion affects also the histone deacetylase complex Sin3, which is required for a normal lifespan. To determine why lin-53 and sin-3 mutants die early, we performed transcriptome and metabolomic analysis revealing that levels of the disaccharide trehalose are significantly decreased in both mutants. As trehalose is required for normal lifespan in C. elegans, lin-53 and sin-3 mutants could be rescued by either feeding with trehalose or increasing trehalose levels via the insulin/IGF1 signaling pathway. Overall, our findings suggest that LIN-53 is required for maintaining lifespan and muscle integrity through discrete chromatin regulatory mechanisms. Since both LIN-53 and its mammalian homologs safeguard cell identities, it is conceivable that its implication in lifespan regulation is also evolutionarily conserved

    The eukaryotic linear motif resource ELM: 10 years and counting

    Get PDF
    The eukaryotic linear motif (ELM http://elm.eu.org) resource is a hub for collecting, classifying and curating information about short linear motifs (SLiMs). For >10 years, this resource has provided the scientific community with a freely accessible guide to the biology and function of linear motifs. The current version of ELM contains ∼200 different motif classes with over 2400 experimentally validated instances manually curated from >2000 scientific publications. Furthermore, detailed information about motif-mediated interactions has been annotated and made available in standard exchange formats. Where appropriate, links are provided to resources such as switches.elm.eu.org and KEGG pathways.Fil: Dinkel, Holder. European Molecular Biology Laboratory; AlemaniaFil: Van Roey, Kim. European Molecular Biology Laboratory; AlemaniaFil: Michael, Sushama. European Molecular Biology Laboratory; AlemaniaFil: Davey, Norman E.. University Of California ; Estados UnidosFil: Weatheritt, Robert J.. MRC. Laboratory of Molecular Biology; Estados UnidosFil: Born, Diana. Ruprecht-Karls-Universität; AlemaniaFil: Speck, Tobias. Ruprecht-Karls-Universität; AlemaniaFil: Kruger, Daniel. Ruprecht-Karls-Universität; AlemaniaFil: Grebnev, Gleb. University College Dublin; IrlandaFil: Kuban, Marta. Maria Sklodowska-Curie Memorial Cancer Center. Laboratory of Bioinformatics and Biostatistics; PoloniaFil: Strumillo, Marta. Maria Sklodowska-Curie Memorial Cancer Center. Laboratory of Bioinformatics and Biostatistics; PoloniaFil: Uyar, Bora. European Molecular Biology Laboratory; AlemaniaFil: Budd, Aidan. European Molecular Biology Laboratory; AlemaniaFil: Altenberg, Brigitte. European Molecular Biology Laboratory; AlemaniaFil: Seiler, Markus. European Molecular Biology Laboratory; AlemaniaFil: Chemes, Lucia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Glavina, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Sánchez Miguel, Ignacio Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Diella, Francesca. European Molecular Biology Laboratory; AlemaniaFil: Gibson, Toby J. European Molecular Biology Laboratory; Alemani

    ELM—the database of eukaryotic linear motifs

    Get PDF
    Linear motifs are short, evolutionarily plastic components of regulatory proteins and provide low-affinity interaction interfaces. These compact modules play central roles in mediating every aspect of the regulatory functionality of the cell. They are particularly prominent in mediating cell signaling, controlling protein turnover and directing protein localization. Given their importance, our understanding of motifs is surprisingly limited, largely as a result of the difficulty of discovery, both experimentally and computationally. The Eukaryotic Linear Motif (ELM) resource at http://elm.eu.org provides the biological community with a comprehensive database of known experimentally validated motifs, and an exploratory tool to discover putative linear motifs in user-submitted protein sequences. The current update of the ELM database comprises 1800 annotated motif instances representing 170 distinct functional classes, including approximately 500 novel instances and 24 novel classes. Several older motif class entries have been also revisited, improving annotation and adding novel instances. Furthermore, addition of full-text search capabilities, an enhanced interface and simplified batch download has improved the overall accessibility of the ELM data. The motif discovery portion of the ELM resource has added conservation, and structural attributes have been incorporated to aid users to discriminate biologically relevant motifs from stochastically occurring non-functional instance

    Ectopic pregnancy secondary to in vitro fertilisation-embryo transfer: pathogenic mechanisms and management strategies

    Get PDF

    Homology and evidence-based genome annotation of Caenorhabditis species

    Get PDF
    I have re-annotated the genomes of four sister species of the model organism Caenorhabditis elegans: C. briggsae, C. remanei, C. brenneri, and C. japonica, using a homology-based gene predictor genBlastG. Compared to the existing gene sets of these four species, genes of the revised gene sets demonstrate higher conservation with their orthologs in C. elegans as well as more ortholog pairs. I have validated and further revised the C. briggsae gene set, through next-generation short read sequencing of the transcriptome. In the revised C. briggsae gene set (23,159 genes), 7,347 genes (33.9% of all genes with introns) have all introns confirmed. Of all introns in the revised gene set (103,083), 62,727 (60.9%) are confirmed. Additionally, I have identified 1,034 operons in C. briggsae, with 532 (51.4%) perfectly conserved in C. elegans. This study sets up a solid platform for comparative genomics analysis and evolutionary studies of Caenorhabditis species

    How pathogens use linear motifs to perturb host cell networks

    No full text
    International audienceMolecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies
    corecore