212 research outputs found

    A double-blinded randomised controlled trial exploring the effect of anodal transcranial direct current stimulation and uni-lateral robot therapy for the impaired upper limb in sub-acute and chronic stroke

    Get PDF
    BACKGROUND:Neurorehabilitation technologies such as robot therapy (RT) and transcranial Direct Current Stimulation (tDCS) can promote upper limb (UL) motor recovery after stroke. OBJECTIVE:To explore the effect of anodal tDCS with uni-lateral and three-dimensional RT for the impaired UL in people with sub-acute and chronic stroke. METHODS:A pilot randomised controlled trial was conducted. Stroke participants had 18 one-hour sessions of RT (Armeo®Spring) over eight weeks during which they received 20 minutes of either real tDCS or sham tDCS during each session. The primary outcome measure was the Fugl-Meyer assessment (FMA) for UL impairments and secondary were: UL function, activities and stroke impact collected at baseline, post-intervention and three-month follow-up. RESULTS:22 participants (12 sub-acute and 10 chronic) completed the trial. No significant difference was found in FMA between the real and sham tDCS groups at post-intervention and follow-up (p = 0.123). A significant ‘time’ x ‘stage of stroke’ was found for FMA (p = 0.016). A higher percentage improvement was noted in UL function, activities and stroke impact in people with sub-acute compared to chronic stroke. CONCLUSIONS:Adding tDCS did not result in an additional effect on UL impairment in stroke. RT may be of more benefit in the sub-acute than chronic phase

    Mental practice-based rehabilitation training to improve arm function and daily activity performance in stroke patients: a randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over 50% of patients with upper limb paresis resulting from stroke face long-term impaired arm function and ensuing disability in daily life. Unfortunately, the number of effective treatments aimed at improving arm function due to stroke is still low. This study aims to evaluate a new therapy for improving arm function in sub-acute stroke patients based on mental practice theories and functional task-oriented training, and to study the predictors for a positive treatment result. It is hypothesized that a six-week, mental practice-based training program (additional to regular therapy) targeting the specific upper extremity skills important to the individual patient will significantly improve both arm function and daily activity performance, as well as being cost effective.</p> <p>Methods/design</p> <p>One hundred and sixty sub-acute stroke patients with upper limb paresis (MRC grade 1–3) will participate in a single-blinded, multi-centre RCT. The experimental group will undertake a six-week, individually tailored therapy regime focused on improving arm function using mental practice. The control group will perform bimanual upper extremity exercises in addition to regular therapy. Total contact time and training intensity will be similar for both groups. Measurements will be taken at therapy onset, after its cessation and during the follow-up period (after 6 and 12 months). Primary outcome measures will assess upper extremity functioning on the ICF level of daily life activity (Wolf Motor Function Test, Frenchay Arm Test, accelerometry), while secondary outcome measures cover the ICF impairment level (Brunnstrom-Fu-Meyer test). Level of societal participation (IPA) and quality of life (EuroQol; SS-Qol) will also be tested. Costs will be based on a cost questionnaire, and statistical analyses on MAN(C)OVA and GEE (generalized estimated equations).</p> <p>Discussion</p> <p>The results of this study will provide evidence on the effectiveness of this mental practice-based rehabilitation training, as well as the cost-effectiveness.</p> <p>Trial registration</p> <p>Current Controlled Trials [ISRCTN33487341)</p

    Wristband accelerometers to motivate arm exercise after stroke (WAVES): study protocol for a pilot randomized controlled trial

    Get PDF
    BACKGROUND: Loss of upper limb function affects up to 85 % of acute stroke patients. Recovery of upper limb function requires regular intensive practise of specific upper limb tasks. To enhance intensity of practice interventions are being developed to encourage patients to undertake self-directed exercise practice. Most interventions do not translate well into everyday activities and stroke patients continue to find it difficult remembering integration of upper limb movements into daily activities. A wrist-worn device has been developed that monitors and provides ‘live’ upper limb activity feedback to remind patients to use their stroke arm in daily activities (The CueS wristband). The aim of this trial is to assess the feasibility of a multi-centre, observer blind, pilot randomised controlled trial of the CueS wristband in clinical stroke services. METHODS/DESIGN: This pilot randomised controlled feasibility trial aims to recruit 60 participants over 15 months from North East England. Participants will be within 3 months of stroke which has caused new reduced upper limb function and will still be receiving therapy. Each participant will be randomised to an intervention or control group. Intervention participants will wear a CueS wristband (between 8 am and 8 pm) providing “live” feedback towards pre-set movement goals through a simple visual display and vibration prompts whilst undertaking a 4-week upper limb therapy programme (reviewed twice weekly by an occupational/physiotherapist). Control participants will also complete the 4-week upper limb therapy programme but will wear a ‘sham’ CueS wristband that monitors upper limb activity but provides no feedback. Outcomes will determine study feasibility in terms of recruitment, retention, adverse events, adherence and collection of descriptive clinical and accelerometer motor performance data at baseline, 4 weeks and 8 weeks. DISCUSSION: The WAVES study will address an important gap in the evidence base by reporting the feasibility of undertaking an evaluation of emerging and affordable technology to encourage impaired upper limb activity after stroke. The study will establish whether the study protocol can be supported by clinical stroke services, thereby informing the design of a future multi-centre randomised controlled trial of clinical and cost-effectiveness. TRIAL REGISTRATION: ISRCTN:82306027. Registered 12 July 2016. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13063-016-1628-2) contains supplementary material, which is available to authorized users

    Brain Effective Connectivity During Motor-Imagery and Execution Following Stroke and Rehabilitation

    Get PDF
    Brain areas within the motor system interact directly or indirectly during motor-imagery and motor-execution tasks. These interactions and their functionality can change following stroke and recovery. How brain network interactions reorganize and recover their functionality during recovery and treatment following stroke are not well understood. To contribute to answering these questions, we recorded blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) signals from10 stroke survivors and evaluated dynamical causal modeling (DCM)-based effective connectivity among three motor areas: primary motor cortex (M1), premotor cortex (PMC) and supplementary motor area (SMA), during motor-imagery and motor-execution tasks. We compared the connectivity between affected and unaffected hemispheres before and after mental practice and combined mental practice and physical therapy as treatments. The treatment (intervention) period varied in length between 14 to 51 days but all patients received the same dose of 60 h of treatment. Using Bayesian model selection (BMS) approach in the DCMapproach, wefound that, after intervention, the same network dominated during motor-imagery and motor-execution tasks butmodulatory parameters suggested a suppressive influence of SM A on M1 during the motor-imagery task whereas the influence of SM A on M1 was unrestricted during themotor-execution task.We found that the intervention caused a reorganization of the network during both tasks for unaffected as well as for the affected hemisphere. Using Bayesian model averaging (BMA) approach, we found that the intervention improved the regional connectivity among the motor areas during both the tasks. The connectivity between PMCandM1was stronger inmotor-imagery taskswhereas the connectivity from PMC to M1, SM A to M1 dominated in motor-execution tasks. There was significant behavioral improvement (p = 0.001) in sensation and motor movements because of the intervention as reflected by behavioral Fugl-Meyer (FMA)measures,whichwere significantly correlated (p=0.05)with a subset of connectivity. These findings suggest that PMC andM1 play a crucial role duringmotor-imagery aswell as during motorexecution task. In addition,M1 causesmore exchange of causal information amongmotor areas during a motorexecution task than during a motor-imagery task due to its interaction with SM A. This study expands our understanding of motor network involved during two different tasks, which are commonly used during rehabilitation following stroke. A clear understanding of the effective connectivity networks leads to a better treatment in helping stroke survivors regain motor ability

    Functional Organization and Restoration of the Brain Motor-Execution Network After Stroke and Rehabilitation

    Get PDF
    Multiple cortical areas of the human brain motor system interact coherently in the low frequency range (\u3c0.1 Hz), even in the absence of explicit tasks. Following stroke, cortical interactions are functionally disturbed. How these interactions are affected and how the functional organization is regained from rehabilitative treatments as people begin to recover motor behaviors has not been systematically studied. We recorded the intrinsic functional magnetic resonance imaging (fMRI) signals from 30 participants: 17 young healthy controls and 13 aged stroke survivors. Stroke participants underwent mental practice (MP) or both mental practice and physical therapy (MP+PT) within 14–51 days following stroke. We investigated the network activity of five core areas in the motor-execution network, consisting of the left primary motor area (LM1), the right primary motor area (RM1), the left pre-motor cortex (LPMC), the right pre-motor cortex (RPMC) and the supplementary motor area (SMA). We discovered that (i) the network activity dominated in the frequency range 0.06–0.08 Hz for all the regions, and for both able-bodied and stroke participants (ii) the causal information flow between the regions: LM1 and SMA, RPMC and SMA, RPMC and LM1, SMA and RM1, SMA and LPMC, was reduced significantly for stroke survivors (iii) the flow did not increase significantly after MP alone and (iv) the flow among the regions during MP+PT increased significantly. We also found that sensation and motor scores were significantly higher and correlated with directed functional connectivity measures when the stroke-survivors underwent MP+PT but not MP alone. The findings provide evidence that a combination of mental practice and physical therapy can be an effective means of treatment for stroke survivors to recover or regain the strength of motor behaviors, and that the spectra of causal information flow can be used as a reliable biomarker for evaluating rehabilitation in stroke survivors

    The reliability of side to side measurements of upper extremity activity levels in healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In both clinical and occupational settings, ambulatory sensors are becoming common for assessing all day measurements of arm motion. In order for the motion of a healthy, contralateral side to be used as a control for the involved side, the inherent side to side differences in arm usage must be minimal. The goal of the present study was to determine the reliability of side to side measurements of upper extremity activity levels in healthy subjects.</p> <p>Methods</p> <p>Thirty two subjects with no upper extremity pathologies were studied. Each subject wore a triaxial accelerometer on both arms for three and a half hours. Motion was assessed using parameters previously reported in the literature. Side to side differences were compared with the intraclass correlation coefficient, standard error of the mean, minimal detectable change scores and a projected sample size analysis.</p> <p>Results</p> <p>The variables were ranked based on their percentage of minimal detectable change scores and sample sizes needed for paired t-tests. The order of these rankings was found to be identical and the top ranked parameters were activity counts per hour (MDC% = 9.5, n = 5), jerk time (MDC% = 15.8, n = 8) and percent time above 30 degrees (MDC% = 34.7, n = 9).</p> <p>Conclusions</p> <p>In general, the mean activity levels during daily activities were very similar between dominant and non-dominant arms. Specifically, activity counts per hour, jerk time, and percent time above 30 degrees were found to be the variables most likely to reveal significant difference or changes in both individuals and groups of subjects. The use of ambulatory measurements of upper extremity activity has very broad uses for occupational assessments, musculoskeletal injuries of the shoulder, elbow, wrist and hand as well as neurological pathologies.</p

    Comparing unilateral and bilateral upper limb training: The ULTRA-stroke program design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>About 80% of all stroke survivors have an upper limb paresis immediately after stroke, only about a third of whom (30 to 40%) regain some dexterity within six months following conventional treatment programs. Of late, however, two recently developed interventions - constraint-induced movement therapy (CIMT) and bilateral arm training with rhythmic auditory cueing (BATRAC) - have shown promising results in the treatment of upper limb paresis in chronic stroke patients. The ULTRA-stroke (acronym for Upper Limb TRaining After stroke) program was conceived to assess the effectiveness of these interventions in subacute stroke patients and to examine how the observed changes in sensori-motor functioning relate to changes in stroke recovery mechanisms associated with peripheral stiffness, interlimb interactions, and cortical inter- and intrahemispheric networks. The present paper describes the design of this single-blinded randomized clinical trial (RCT), which has recently started and will take several years to complete.</p> <p>Methods/Design</p> <p>Sixty patients with a first ever stroke will be recruited. Patients will be stratified in terms of their remaining motor ability at the distal part of the arm (i.e., wrist and finger movements) and randomized over three intervention groups receiving modified CIMT, modified BATRAC, or an equally intensive (i.e., dose-matched) conventional treatment program for 6 weeks. Primary outcome variable is the score on the Action Research Arm test (ARAT), which will be assessed before, directly after, and 6 weeks after the intervention. During those test sessions all patients will also undergo measurements aimed at investigating the associated recovery mechanisms using haptic robots and magneto-encephalography (MEG).</p> <p>Discussion</p> <p>ULTRA-stroke is a 3-year translational research program which aims (1) to assess the relative effectiveness of the three interventions, on a group level but also as a function of patient characteristics, and (2) to delineate the functional and neurophysiological changes that are induced by those interventions.</p> <p>The outcome on the ARAT together with information about changes in the associated mechanisms will provide a better understanding of how specific therapies influence neurobiological changes, and which post-stroke conditions lend themselves to specific treatments.</p> <p>Trial Registration</p> <p>The ULTRA-stroke program is registered at the Netherlands Trial Register (NTR, <url>http://www.trialregister.nl</url>, number NTR1665).</p

    Valid and reliable instruments for arm-hand assessment at ICF activity level in persons with hemiplegia: a systematic review

    Get PDF
    Contains fulltext : 110141.pdf (publisher's version ) (Open Access)BACKGROUND: Loss of arm-hand performance due to a hemiparesis as a result of stroke or cerebral palsy (CP), leads to large problems in daily life of these patients. Assessment of arm-hand performance is important in both clinical practice and research. To gain more insight in e.g. effectiveness of common therapies for different patient populations with similar clinical characteristics, consensus regarding the choice and use of outcome measures is paramount. To guide this choice, an overview of available instruments is necessary. The aim of this systematic review is to identify, evaluate and categorize instruments, reported to be valid and reliable, assessing arm-hand performance at the ICF activity level in patients with stroke or cerebral palsy. METHODS: A systematic literature search was performed to identify articles containing instruments assessing arm-hand skilled performance in patients with stroke or cerebral palsy. Instruments were identified and divided into the categories capacity, perceived performance and actual performance. A second search was performed to obtain information on their content and psychometrics. RESULTS: Regarding capacity, perceived performance and actual performance, 18, 9 and 3 instruments were included respectively. Only 3 of all included instruments were used and tested in both patient populations. The content of the instruments differed widely regarding the ICF levels measured, assessment of the amount of use versus the quality of use, the inclusion of unimanual and/or bimanual tasks and the inclusion of basic and/or extended tasks. CONCLUSIONS: Although many instruments assess capacity and perceived performance, a dearth exists of instruments assessing actual performance. In addition, instruments appropriate for more than one patient population are sparse. For actual performance, new instruments have to be developed, with specific focus on the usability in different patient populations and the assessment of quality of use as well as amount of use. Also, consensus about the choice and use of instruments within and across populations is needed
    corecore