23 research outputs found

    Mutations in MAP3K1 tilt the balance from SOX9/FGF9 to WNT/ÎČ-catenin signaling

    Get PDF
    In-frame missense and splicing mutations (resulting in a 2 amino acid insertion or a 34 amino acid deletion) dispersed through the MAP3K1 gene tilt the balance from the male to female sex-determining pathway, resulting in 46,XY disorder of sex development. These MAP3K1 mutations mediate this balance by enhancing WNT/ÎČ-catenin/FOXL2 expression and ÎČ-catenin activity and by reducing SOX9/FGF9/FGFR2/SRY expression. These effects are mediated at multiple levels involving MAP3K1 interaction with protein co-fact

    The polo-like kinase 1 (PLK1) inhibitor NMS-P937 is effective in a new model of disseminated primary CD56+ acute monoblastic leukaemia

    Get PDF
    CD56 is expressed in 15–20% of acute myeloid leukaemias (AML) and is associated with extramedullary diffusion, multidrug resistance and poor prognosis. We describe the establishment and characterisation of a novel disseminated model of AML (AML-NS8), generated by injection into mice of leukaemic blasts freshly isolated from a patient with an aggressive CD56+ monoblastic AML (M5a). The model reproduced typical manifestations of this leukaemia, including presence of extramedullary masses and central nervous system involvement, and the original phenotype, karyotype and genotype of leukaemic cells were retained in vivo. Recently Polo-Like Kinase 1 (PLK1) has emerged as a new candidate drug target in AML. We therefore tested our PLK1 inhibitor NMS-P937 in this model either in the engraftment or in the established disease settings. Both schedules showed good efficacy compared to standard therapies, with a significant increase in median survival time (MST) expecially in the established disease setting (MST = 28, 36, 62 days for vehicle, cytarabine and NMS-P937, respectively). Importantly, we could also demonstrate that NMS-P937 induced specific biomarker modulation in extramedullary tissues. This new in vivo model of CD56+ AML that recapitulates the human tumour lends support for the therapeutic use of PLK1 inhibitors in AML

    Molecular Mechanisms Generating and Stabilizing Terminal 22q13 Deletions in 44 Subjects with Phelan/McDermid Syndrome

    Get PDF
    In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17–74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS

    Insertional translocation involving an additional nonchromothriptic chromosome in constitutional chromothripsis: Rule or exception?

    No full text
    Background Chromothripsis, which is the local massive shattering of one or more chromosomes and their reassembly in a disordered array with frequent loss of some fragments, has been mainly reported in association with abnormal phenotypes. We report three unrelated healthy persons, two of which parenting a child with some degree of intellectual disability, carrying a chromothripsis involving respectively one, two, and three chromosomes, which was detected only after whole-genome sequencing. Unexpectedly, in all three cases a fragment from one of the chromothripsed chromosomes resulted to be inserted within a nonchromothripsed one. Methods Conventional cytogenetic techniques, paired-end whole-genome sequencing, polymerase chain reaction, and Sanger sequencing were used to characterize complex rearrangements, copy-number variations, and breakpoint sequences in all three families. Results In two families, one parent was carrier of a balanced chromothripsis causing in the index case a deletion and a noncontiguous duplication at 3q in case 1, and a t(6;14) translocation associated with interstitial 14q deletion in case 2. In the third family, an unbalanced chromothripsis involving chromosomes 6, 7, and 15 was inherited to the proband by the mosaic parent. In all three parents, the chromothripsis was concurrent with an insertional translocation of a portion of one of the chromothriptic chromosomes within a further chromosome that was not involved in the chromothripsis event. Conclusion Our findings show that (a) both simple and complex unbalanced rearrangements may result by the recombination of a cryptic parental balanced chromothripsis and that (b) insertional translocations are the spy of more complex rearrangements and not simply a three-breakpoint event

    Immature Immunoglobulin Gene Rearrangements Are Recurrent in B Precursor Adult Acute Lymphoblastic Leukemia Carrying TP53 Molecular Alterations

    No full text
    Here, we describe the immunoglobulin and T cell receptor (Ig/TCR) molecular rearrangements identified as a leukemic clone hallmark for minimal residual disease assessment in relation to TP53 mutational status in 171 Ph-negative Acute Lymphoblastic Leukemia (ALL) adult patients at diagnosis. The presence of a TP53 alterations, which represents a marker of poor prognosis, was strictly correlated with an immature DH/JH rearrangement of the immunoglobulin receptor (p < 0.0001). Furthermore, TP53-mutated patients were classified as pro-B ALL more frequently than their wild-type counterpart (46% vs. 25%, p = 0.05). Although the reasons for the co-presence of immature Ig rearrangements and TP53 mutation need to be clarified, this can suggest that the alteration in TP53 is acquired at an early stage of B-cell maturation or even at the level of pre-leukemic transformation

    Double homozygosity in CEP57 and DYNC2H1 genes detected by WES: Composite or expanded phenotype?

    No full text
    Abstract Background In the last few years trio‐whole exome sequencing (WES) analysis has demonstrated its potential in obtaining genetic diagnoses even in nonspecific clinical pictures and in atypical presentations of known diseases. Moreover WES allows the detection of variants in multiple genes causing different genetic conditions in a single patient, in about 5% of cases. The resulting phenotype may be clinically discerned as variability in the expression of a known phenotype, or as a new unreported syndromic condition. Methods Trio‐WES was performed on a 4‐month‐old baby with a complex clinical presentation characterized by skeletal anomalies, congenital heart malformation, congenital hypothyroidism, generalized venous and arterial hypoplasia, and recurrent infections. Results WES detected two different homozygous variants, one in CEP57, the gene responsible for mosaic variegated aneuploidy syndrome 2, the other in DYNC2H1, the main gene associated with short‐rib thoracic dysplasia. Conclusion The contribution of these two different genetic causes in determining the phenotype of our patient is discussed, including some clinical signs not explained by the detected variants. The report then highlights the role of WES in providing complete and fast diagnosis in patients with complex presentations of rare genetic syndromes, with important implications in the assessment of recurrence risk

    Improvements in individual dose measurement techniques following nuclear emergencies

    No full text
    International audienceThe aim of CONFIDENCE WP2 is to improve the situation awareness in the early phase of a nuclear accident by trying to reduce the uncertainty in individual dose assessment when dealing with external and internal exposures. Main WP2 research actions to improve external dosimetry in this emergency frame were the development of destruction-free protocols using electronic components in smartphones for external dose measurements, Monte Carlo (MCNP) calculations for organ dose assessment with associated uncertainties and the organization of a workshop for integration of biodosimetry into emergency response. On the other hand, one of the main concerns after the release of radioactive material in case of a nuclear reactor accident is the intake of radioiodines in workers and population. A smartphone/ tablet application for direct calculation of thyroid doses from monitoring data of the content of 131I (and 132I) in the thyroid was developed during the project (Prototype of processing unit for thyroid dose monitor [IDOSE]). Up to date age dependent ICRP dose per content values are used by this tool, allowing a rapid screening of exposed persons. A sensitivity analysis on thyroid doses was carried out, considering 16 exposure scenarios leading to 16 different dose estimates, using ICRP56/119 (ICRP60) vs. ICRP130/137 iodine models for adults, varying the time of intake, the time pattern (acute vs. chronic) and considering not well defined relative abundance of short-lived radioiodines and 132Te. Real cases of Europeans contaminated in Japan shortly after the Fukushima NPP accident (low doses), and artificial cases of high doses generated to see the impact of the different parameters in this study, were used for applying this multiintake scenario approach. Main conclusions of the study are presented her

    Loss-of-Function FANCL Mutations Associate with Severe Fanconi Anemia Overlapping the VACTERL Association

    No full text
    The diagnosis of VACTERL syndrome can be elusive, especially in the prenatal life, due to the presence of malformations that overlap those present in other genetic conditions, including the Fanconi anemia (FA). We report on three VACTERL cases within two families, where the two who arrived to be born died shortly after birth due to severe organs' malformations. The suspicion of VACTERL association was based on prenatal ultrasound assessment and postnatal features. Subsequent chromosome breakage analysis suggested the diagnosis of FA. Finally, by next-generation sequencing based on the analysis of the exome in one family and of a panel of Fanconi genes in the second one, we identified novel FANCL truncating mutations in both families. We used ectopic expression of wild-type FANCL to functionally correct the cellular FA phenotype for both mutations. Our study emphasizes that the diagnosis of FA should be considered when VACTERL association is suspected. Furthermore, we show that loss-of-function mutations in FANCL result in a severe clinical phenotype characterized by early postnatal death
    corecore