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ABSTRACT 
In-frame mis-sense and splicing mutations (resulting in a 2 amino acid insertion or a 34 

amino acid deletion) dispersed through the MAP3K1 gene tilt the balance from the male to 

female sex-determining pathway, resulting in 46,XY disorder of sex development (DSD). These 

MAP3K1 mutations mediate this balance by enhancing WNT/β-catenin/FOXL2 expression and 

β-catenin activity and by reducing SOX9/FGF9/FGFR2/SRY expression. These effects are 

mediated at multiple levels involving MAP3K1 interaction with protein co-factors and 

phosphorylation of downstream targets. In transformed B-lymphoblastoid cell lines and NT2/D1 

cells transfected with wild type or mutant MAP3K1 cDNAs under control of the constitutive 

CMV promoter, these mutations increased binding of RHOA, MAP3K4, FRAT1 and AXIN1 

and increased phosphorylation of p38 and ERK1/2.  Overexpressing RHOA or reducing 

expression of MAP3K4 in NT2/D1 cells produced phenocopies of the MAP3K1 mutations. 

Using siRNA knockdown of RHOA or overexpressing MAP3K4 in NT2/D1 cells produced anti-

phenocopies. Interestingly, the effects of the MAP3K1 mutations were rescued by co-transfection 

with wild type MAP3K4. Although MAP3K1 is not usually required for testis-determination, 

mutations in this gene can disrupt normal development through the gains of function 

demonstrated in this study.  
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INTRODUCTION 

Sex determination in mammals is a genetically encoded process that mediates the balance 

between testis and ovary developmental pathways. To date, much work has focused on the roles 

of transcription factors (SRY, SOX9, NR0B1), growth factors (FGF9, PDGF) and signaling 

molecules (WNT4, RSPO1, β-catenin) that regulate these pathways (1-3).  Knock out of these 

genes in the permissive developing gonad or overexpression in the non-permissive developing 

gonad lead to genetic sex reversal.  Examples of these effects include homozygous loss of 

function alleles in RSPO1 and ectopic expression of SRY and SOX9 all leading to 46,XX 

testicular disorder of sex development as well as knockout of SRY and SOX9 and 

overexpression of WNT4 and stabilization of β-catenin leading to ovarian development or 

gonadal dysgenesis (4-11). Despite prior observations that signal transduction molecules in the 

MAP kinase pathway play a role in mediating the expression of these genes and their products, 

especially in chondrocyte development, their roles in mediating the balance between 

SOX9/FGF9 expression for testicular determination and WNT/β-catenin expression for ovarian 

determination is poorly understood (12-14). 

Previously, we showed that missense mutations at well-conserved sites or in-frame 

splicing variants with in-frame insertion in MAP3K1 resulted in 46,XY gonadal dysgenesis and 

milder forms of this phenotype based on co-inheritance in multiple families (15). We have also 

demonstrated missense mutations in MAP3K1 in several cases of sporadic 46,XY gonadal 

dysgenesis. In turn, these mutations altered phosphorylation of the downstream targets, p38 and 

ERK1/2, and increased binding of the co-factors, RHOA and MAP3K4 as shown in our previous 

studies (16). Yet, knockout of the MAP3K1 gene itself led to only minor testicular abnormalities 

in the developing mouse gonad, suggesting that it is not necessary for testicular development 

(17). Our previous studies showed a series of N-terminal mutations through exon 10; here, we 
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extend the repertoire of mutations that cause 46,XY gonadal dysgenesis further downstream to 

exon 13 and 14, spreading across multiple functional domains of MAP3K1 (15). We observed 

that these mutations tilt the balance in the sex-determining pathways not only by up-regulating β-

catenin expression and activity, but also at multiple levels by down-regulating SOX9, SRY, 

FGF9 and FGFR2 expression.  The effects of these mutations in MAP3K1 were rescued by co-

transfection with wild-type MAP3K4 in NT2/D1 cells.  

RESULTS 

Mutations in MAP3K1 increase phosphorylation of downstream targets and binding of 

associated proteins. In the current study, we examined six different mutations in the MAP3K1 

gene, five of which caused abnormal developmental phenotypes (Figure 1, Table 1). These 

mutations have the characteristic of being in-frame alterations, either non-conservative single-

nucleotide variants (p.P153L, p.L189R, p.L189P, p.K246E), or familial splice acceptor site 

variant (c.634-8T>A and c.2180-2A>G) (Figure 1C). Previously, we showed that the c.634-

8T>A  mutation created a novel splice acceptor site that results in insertion of two amino acids 

residues in-frame between codons 211 and 212 (15). The c.2180-2A>G mutation results in 

skipping exon 13 or use of a cryptic acceptor at c.2283_2284; chr5:56177013-5617714 (UCSC 

hg19) with loss of 34 amino acid residues in-frame between codons 727 and 761 (Figure 1C). 

Thus, these mutations occurred in exons 2, 3, 13 and 14 of this 20 exon gene. Transformed B-

cell lymphoblastoid cell lines (LCLs) were available for all of these mutations.  These were used 

for analysis of phosphorylation of downstream targets, interactions with MAP3K1 binding 

proteins, or relative abundance of β-catenin.   

As we have reported previously for the p.L189P, p.L189R and c.654-8A mutations that 

were associated with gonadal dysgenesis, analysis of the LCLs for the newly identified mutations 

demonstrated varying increases in phosphorylation of the downstream targets, p38 and ERK1/2, 

 by guest on February 26, 2015
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/


5 

and increases in binding of RHOA and MAP3K4 (Figure 2A, B, C, 1S, Table 1)(15-16). The 

phosphorylation of ERK1/2 and the binding of RHOA were measured by immunoprecipitation 

Western blot analysis, and confirmed by the flow-variant analysis (FVA) method that uses 

modified immunoprecipitation with flow cytometry to measure the binding of specific proteins to 

fluorochrome-coupled antibodies (16). The p38 phosphorylation and RHOA binding in the non-

pathogenic hypomorphic p.K246E variant LCL were only slightly increased compared to the 

wild type male LCL control and significantly less than in the other mutation-bearing LCLs. We 

have examined a total of 11 wild types: 7 normal males and 4 normal females in triplicates of 

three biological repeats to establish the normal baseline control. The phosphorylation of ERK1/2 

and the binding of MAP3K4 to MAP3K1 in the p.K246E-bearing LCL were not increased 

compared to the control.   

This increased binding was not confined to RHOA and MAP3K4, previously MAP3K1 

has been shown to bind AXIN1 in various truncated deletion models, which in turn, binds to 

FRAT1 (18-20). FVA performed on wild type or mutant LCLs using MAP3K1 as bait showed 

increased binding to FRAT1 and AXIN1 for those bearing the p.L189P and p.153L mutations, 

but not the p.K246E variant. The increased binding of AXIN1 to MAP3K1 is independent of the 

binding of FRAT1 to MAP3K1 (Figure 2D). 

The effects of MAP3K1 mutations on phosphorylation of downstream targets and binding 

of associated proteins can be recapitulated in NT2/D1 cells. Human teratocarcinoma cell line 

NT2/D1 has been shown previously to express the repertoire of genes observed in testis 

determination and has been used to examine the effects of mutations in SF1 and up-regulation of 

β-catenin on the expression of SOX9 (21-22). Transfection of mutant and wild type cDNAs with 

CMV-driven expression plasmids led to efficient expression of MAP3K1 (Figure 2S, A). The 

p.L189P, p.L189R and c.654-8A mutations increased phosphorylation of p38 and ERK1/2, as 
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had been observed in LCLs previously (15). These increases in phosphorylation were detected 

using standard Western blots (Figure 3A, Figure 1S) and phosphorylated digital cell Western 

where expression of multiple target proteins (total and phosphorylated) are measured in large 

numbers of intact fixed cells simultaneously (DCW) (Figure 3B).  Using the co-

immunoprecipitation method of FVA, the NT2/D1 cells transfected with the p.L189P, p.L189R 

and c.654-8A mutant cDNAs showed increased RHOA binding to MAP3K1 bait on the epoxy 

coated beads (Y-axis) and forward scatter (FSC-A - X-axis), as has been observed previously in 

LCLs  (Figure 3C) (15). FSC is the light scatter fluorescence measured at low-angle forward 

proportional to the diameter of the bead or cell. FSC provides a suitable method for detecting 

particles greater than a given size, independent of their fluorescence. Although overexpression of 

the wild type MAP3K1 cDNA increased both RHOA binding and p38 and ERK1/2 

phosphorylation, these effects were approximately 2.5-fold increased when the mutant cDNAs 

were transfected (Figure 3D).  

Mutations in MAP3K1 tilt the balance of gene expression in the testis-determining 

pathway. Three mutations, p.L189P, p.L189R and c.654-8A, were studied in greater detail to 

understand their effects on the testis-determining pathway. Transfection of these mutant cDNAs 

decreased expression of SOX9 mRNA dramatically, but increased expression of β-catenin 

mRNA by 30.2-fold for L189P, 8.5-fold for L189R, and 97.1-fold for c.654-8A (Figure 4A and 

4C).   The altered expression of SOX9 and β-catenin was also observed at the protein level. 

SOX9 protein expression compared to wild type was reduced 5.1-fold for L189P, 5.7-fold for 

L189R and 4.1-fold for c.654-8A (Figure 4B). At the same time, β-catenin protein expression 

was increased 11.6-fold, 5.5-fold and 27.1-fold, respectively, when NT2/D1 was transfected with 

the mutant cDNAs, L189P, L189R and c.654-8A (Figure 4D). To test whether the increased β-

catenin expression resulted in increased β-catenin activity, co-transfection experiments were 
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performed with the TCF/LEF Cignal dual luciferase reporter expression vector system to 

measure WNT signal transduction using the luciferase reporter cDNA under the control of the β-

catenin-inducible LEF1 promoter. As expected, co-transfection of the p.L189P, p.L189R and 

c.654-8A mutant cDNAs significantly increased TCF/LEF1 luciferase activity (Figure 5A).  We 

also examined FGF9, FGFR2 and FOXL2 mRNA expression in NT2/D1 cells transfected with 

the mutant or wild type cDNAs. Transfection of these mutant cDNAs resulted in a marked 

reduction of expression for FGF9 (Figure 5B) and FGFR2 (Figure 5C). We observed increased 

FOXL2 mRNA expression in the mutant transfections -- 3.5-fold for L189P, 2.5-fold for L189R 

and 10.6-fold for c.654-8A (Figure 5D). The increased FOXL2 mRNA expression demonstrated 

that the increased β-catenin was biologically active.  

Modulating the expression of the MAP3K1 binding partners produced molecular 

phenocopies of MAP3K1 mutations, RHOA and MAP3K4. The expression of RHOA and 

MAP3K4 were modulated by transfection of wild type cDNAs for the respective genes or by 

knockdown using specifically targeted Stealth-siRNAs. The Stealth-siRNAs did not cause off-

target effects (Figure 2S, C). These genes had mutually antagonistic effects on the downstream 

signaling pathways for SOX9 and β-catenin as well. Overexpression of RHOA and knockdown 

of MAP3K4 led to diminished expression of SOX9 and enhanced mRNA expression of β-catenin 

by 81.5 and 60.5-fold respectively (Figure 6A and B), whereas knockdown of RHOA by siRNA 

and overexpression of MAP3K4 led to the opposite effects – increased expression of SOX9 

levels by 508 and 171-fold, respectively, and dramatically decreased expression of β-catenin 

levels (Figure 6A and B). Thus, overexpression of RHOA and knockdown of MAP3K4 provided 

phenocopies of the MAP3K1 mutations in the MAP kinase signaling pathway, suggesting that 

overexpression of wild type MAP3K4 could rescue the effects of MAP3K1 mutations. 
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The effects of MAP3K1 mutations were rescued by co-transfection with wild-type 

MAP3K4. To test for MAP3K4 rescue of MAP3K1 mutations, co-transfection experiments were 

performed using a wild type MAP3K4 plasmid and wild type or mutant MAP3K1 plasmids 

efficient transfection into NT2/D1 cells (Figure 2S, B). In separate experiments, the NT2/D1 

cells transfected with only mutant MAP3K1 cDNAs (p.L189P, p.L189R and c.654-8A) were 

compared to cotransfected mutant cDNAs with MAP3K4 showed restoration of the mRNA and 

protein expression of SOX9 in mutants (Figure 4A and B) and, for β-catenin levels, MAP3K4 

restored the mutants to wild type levels  (Figure 4C and D), that is, the expression of SOX9 was 

increased and the expression of β-catenin was reduced in mutants when MAP3K4 was 

introduced by transfection.  Moreover, the reduction in β-catenin expression was confirmed by 

TCF dual luciferase reporter showing similar reduction in β-catenin activity in mutant 

cotransfected with MAP3K4 (Figure 5D). Thus, MAP3K4 rescued the effects of MAP3K1 

mutations. This rescue of the MAP3K1 mutations and of the RHOA overexpression phenocopy 

appeared to be mediated by increasing SRY expression. Similarly, Taqman qPCR on SRY 

mRNA expression levels showed marked reduction compared to wild type when the NT2/D1 

cells were transfected with mutant MAP3K1 cDNAs or RHOA CMV-driven expression 

plasmids. Co-transfection with a MAP3K4 expression construct, rescued the SRY mRNA 

expression in these mutant transfected cells by restoring SRY to that of wild type cells (Figure 

6C).   

 

DISCUSSION  

The development of the embryonic bipotential gonad is genetically controlled. The 

somatic cell progenitors express both testicular (SOX9/FGF9) and ovarian (WNT4/ β-catenin) 

factors in a controlled spatial pattern. If SRY is expressed, SOX9 and FGF9 are up-regulated via 
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a mutual feed-forward loop and the somatic cells adopt a Sertoli fate (1). In turn, SOX9 employs 

two distinct mechanisms to inhibit WNT/β-catenin signaling.  The N-terminus of SOX9 

promotes β-catenin degradation, whereas the C-terminus inhibits β-catenin transcriptional 

activity without affecting its stability (23). Thus, the normal role of SRY in XY gonads is to tip 

the balance towards the testis-specific pathway (4, 6).  This pathway can be disrupted by 

mutations in SRY, SOX9, and SF1, all transcription factors that bind to the SOX9 TESCO 

enhancer (24).  In mice, the pathway can be over-ridden by a dominant stabilizing mutation in β-

catenin (11). Here, we show that the pathway can also be over-ridden by a series of five different 

in-frame mutations in MAP3K1 that were identified in individuals with abnormal gonadal 

development or by RHOA and MAP3K4 modulations.  The effect of these mutations was 

observed to decrease SOX9 expression and increase -catenin expression and activity through 

multiple effects in the MAP kinase pathway (Figure 7).  

 The mutations spanned exons 2, 3, 13 and 14 and affected both coding (missense) and 

splicing. The splicing mutations resulted in insertion of 2 amino acids or deletion of 34 amino 

acids. Yet, all of the mutations resulting in gonadal dysgenesis caused increased phosphorylation 

of ERK1/2 and p38 and increased binding of RHOA and MAP3K4 and the representative 

mutations studied increased binding of AXIN1 and FRAT1 proteins. Therefore, these were a 

range of sites N-terminal to the MAP3K1 kinase domain that could influence binding of co-

factors and increase kinase activity.  The increased phosphorylation of ERK1/2 and p38 are both 

known to mediate inactivation of GSK3β, which, in turn, leads to stabilization and up-regulation 

of -catenin (25-27). AXIN1 and FRAT1 also mediate inactivation of GSK3β, AXIN1 interacts 

with GSK3β to reduce -catenin abundance, whereas FRAT1 inhibits this process (18-20). 

Indeed, previous work in -catenin signaling demonstrated that transfection of siRNA to GSK3β 

increased expression and activity of β-catenin, similar to our observation of NT2/D1 cell 
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phenocopies of the MAP3K1 mutations. A previous study showed that AXIN1 association to the 

MAP3K1 N-terminal region of ‘KGANLLIDSTGORL’ acted as an activation complex. Upon 

MAP3K1 depletion in the HEK293T cotransfected with TCF reporter constructs, there was a 

reduction in TOPFlash activity, suggesting that MAP3K1 is an integral part of AXIN1 

sequestration (18). It is possible that FRAT1 and AXIN1 association with MAP3K1 is acting as a 

sink to promote -catenin stabilization, but such an observation warrants an independent 

investigation into the WNT signaling cascade mechanisms. 

 All of the mutations enhanced binding to RHOA, a known positive regulator of 

MAP3K1 kinase activity (28). In chondrocytes development, RHOA regulates the transcriptional 

activity of SOX9 and its feedback loop (29-31). Likewise, we generated phenocopies of the 

MAP3K1 mutants by overexpressing RHOA or anti-phenocopies by down-regulating expression 

of RHOA by siRNA transfection.  Furthermore, all of the mutations examined here enhanced 

binding of MAP3K4 to MAP3K1 protein complex.  This might have arisen through interactions 

with their shared binding partner, AXIN1 (32-33). Both MAP kinases compete for AXIN 

binding, albeit at different sites (32).  We have suggested previously that the presence of these 

MAP3K1 mutations may alleviate this competition (16). Unlike MAP3K1, MAP3K4 is an 

essential testis determining gene. In mice, homozygous loss of function alleles in MAP3K4 lead 

to disrupted testis development from failure to support cord development (34). This failure of 

testicular development results from failure to up-regulate Sry, an effect mediated by the Map3k4 

binding partner, Gadd45γ. In the current experiments, knocking down the expression of 

MAP3K4 produced molecular phenocopies of the MAP3K1 mutations and overexpressing 

MAP3K4 produced anti-phenocopies. This over-expression of MAP3K4 corrected the 

expression patterns of SOX9 and β-catenin and normalized β-catenin activity in co-transfection 

experiments with MAP3K1 mutations.  
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 Although bone abnormalities have not been reported in individuals harboring MAP3K1 

mutations, these may nonetheless be present and may represent an ascertainment bias. 

Heterozygous mutations in the SOX9 gene with resulting haploinsufficiency cause campomelic 

dysplasia in humans and hypoplasia of endochondral bones in mice (9, 35). This phenotype has 

also been produced by stabilization of β-catenin in chondrocytes (12). 

 These experiments demonstrate that mutations in MAP3K1 caused abnormal testicular 

development by down-regulating SOX9 expression mediated by RHOA and by the β-catenin 

negative feedback loop. Furthermore, the mutated MAP3K1 proteins up-regulated β-catenin 

expression and activity through increased phosphorylation of p38 and ERK1/2 and increased 

binding of AXIN1 and FRAT1 proteins. Seemingly a threshold of cofactor binding and kinase 

activity must be exceeded to affect gonadal development. The p.K246E mutation reported here 

increased p38 kinase activity at modest level, yet had no effect on RHOA binding, ERK1/2 

phosphorylation, nor testicular development. This mutation is representative of a series of 23 rare 

missense variants in the MAP3K1 gene that have been reported in dbSNP, each with an 

individual allele frequency less than 1% and collectively with an allele frequency of 1.56% 

(http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?locusId=4214). Some of these may alter 

the cofactor binding and kinase activity above the threshold in aggregate to cause abnormal 

testicular development and explain the seeming prevalence of MAP3K1 mutations that we have 

observed as a cause for 46,XY gonadal dysgenesis (15).  
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MATERIALS AND METHODS 

Cell culture 

This study was approved by the institutional review boards of Albert Einstein College of 

Medicine and the collaboration with University of Pavia and appropriate informed consent was 

obtained from all human subjects. Isolated and EBV immortalized B-lymphoblastoid cell lines, 

and human Neuron-committed Teratocarcinoma (NT2/D1) cells, were maintained in RPMI 1640 

and DMEM (Life Technologies, Grand Island, NY, USA) supplemented with 10% and 15% fetal 

bovine serum, respectively, and cultured in CO2 jacketed 37oC incubators according to the 

manufacturer’s recommendations (GIBCO, Life Technologies, Grand Island, NY, USA). The 

NT2/D1 cells were starved for 24 hours for cell synchronization prior to all transfection 

experiments.  

 

Co-immunoprecipitation Western blots and flow variant analysis (FVA) 

At 85% confluence, NT2/D1 cells were washed and collected with cold phosphate 

buffered saline (PBS) and then lysed in cold lysis buffer, containing 150 mM NaCl, 30 mM Tris 

(pH 7.5), 1 mM EDTA, 1% Triton X-100, 10% glycerol, 0.1 mM PMSF, 0.5 mM DTT, and 

protease and phosphatase inhibitor cocktail tablets (EDTA-free) (Roche Applied Science, 

Mannheim, Germany). Flow variant analysis (FVA) was performed as previously described with 

the following modifications (16). After centrifugation (12,000 g for 30 minutes at 48C), the 

cellular lysates were pre-cleared with IgG-Dynabeads (Life Technologies, Grand Island, NY, 

USA) for at least 4 hours at 4oC. Immunoprecipitation of endogenous complexes were carried 

out by incubating the cellular lysates with anti-MAP3K1 antibody-conjugated, epoxy-coated 

Dynabeads or mouse IgG immobilized on Protein G Dynabeads (Life Technologies, Grand 

Island, NY, USA) at 4oC overnight. Immunocomplexes were washed with cold flow cytometry 
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buffer three times and resuspended in 50 ul of the flow cytometry buffer, containing Tris, pH 7.4, 

50 mM, sodium azide 0.02%, defined grade fetal bovine serum 5%, PBS, pH 7.4. The 

immunoprecipitated beads were sorted and analyzed on BDFacsCanto II flow cytometer (BD 

Biosciences, San Jose, CA, USA) followed by concurrent Western blot analysis of 500,000 

beads remained after FVA. The beads were boiled in Western loading buffer with SDS at 95oC 

for 10 minutes prior to Western gel loading. Gradient Bis-Tris 4-12% gels were used (Life 

Technologies, Grand Island, NY, USA), and transferred using iBlot and the transfer kit for 8 

minutes followed by BSA blocking, containing BSA 1%, host serum 1%, sodium azide 0.02%, 

PBS, pH 7.4, 2.7 mM KCl. The blots were hybridized overnight on a rocker in 4oC by using anti-

MAP3K1 (clone C-22, Santa Cruz, CA, USA), MAP3K4 (clone 4D3, Santa Cruz, CA, USA) 

GSK3β (clone 27C10, Cell Signalling Inc., Danvers, MA, USA), RHOA (Ser1490, Cell 

Signaling), AXIN1 (Abcam, Cambridge, UK), β-catenin (clone B-5-1-2, Sigma-Aldrich, St. 

Louis, MO, USA), and SOX9 (Abcam, Cambridge, UK) antibodies, as described. 

 

cDNA and RNA interference constructs 

A full-length MAP3K1 wild-type plasmid driven by a CMV promoter was used as a 

template for mutagenesis PCR for the three mutations studied, as described below. RHOA and 

MAP3K4 Origene True ORF plasmids (Origene, Rockville, MD, USA) were used to transfect 

NT2/D1 cells, including those that were performed to demonstrate specificity of targeted 

knockdown by siRNAs. Predesigned Stealth siRNA triplex targeting transcripts of the human 

RHOA and MAP3K4 (Life Technologies, Grand Island, NY, USA) were used to knock down 

RHOA or MAP3K4 in NT2/D1 cells. Off-target scrambled control siRNA pool was used as a 

control (Life Technologies, Grand Island, NY, USA). 15 nM siRNA was delivered into 1x105 

NT2/D1 cells using the Lipofectamine transfection reagents (Life Technologies, Grand Island, 
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NY, USA). Gene expression of the mRNA and protein were examined 48 hours after transfection 

by qPCR, Western blot, and digital cell Western (DCW) analysis. For DCW, 1X106 cells were 

counted for each sample and 16% formaldehyde was added directly into the culture medium to a 

final concentration of 1.5%). The cells were incubated for 10 minutes at 25oC or room 

temperature, then pelleted by low speed centrifugation at 2000g at 4OC. The cell pellet was 

resuspended by vortexing in 500 μl ice-cold methanol and incubated on ice for 5 minutes. Cells 

were stored at −80°C with minimum degradation. Prior to DCW analysis, 50-100 uL of cells or 

~500 million cells were stained with fluorescently labeled antibodies at 1:100.  

 

Reporter gene assays and transient transfection 

The TCF/LEF Cignal luciferase reporter assay is a pre-formulated mix of Renilla with a 

transfection-ready TCF/LEF reporter construct, negative control or positive control (Qiagen, 

Valencia, CA, USA). The transcription factor reporters and controls were transfected in parallel 

with identical experimental parameters. Dual-luciferase results were calculated for each 

transfectant by normalizing to internal fluorescence of Renilla and then calculating the change in 

the activity by comparing the normalized luciferase activities of the reporter in treated versus 

untreated transfectants. The identically treated negative control transfectants served as specificity 

controls. Transfection efficiency was determined from the activity of green fluorescent protein 

(GFP) positive control was calculated for, as well as a positive control for both the firefly and 

Renilla luciferase assays. The cells were lysed after 24 and 48 hours using luciferase lysis buffer 

(Promega Corp., Madison, WI, USA), and luciferase activities were measured using the Dual-

Luciferase reporter assay system on dual injector Biotek Synergy H1 reader (Biotek, Winooski, 

VT, USA). All transfection experiments were performed in triplicates. 
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 In the siRNA knockdown co-transfection experiments, NT2/D1 cells were seeded at a 

density of 1x105 cells/6-well plate in triplicates and siRNA targeting the human RHOA or 

MAP3K4 gene or control non-targeting medium GC content siRNA was delivered to NT2/D1 

cells the following day after overnight serum deprivation in DMEM-only media. After 24 hours, 

cells were transfected with Cignal TCF/LEF luciferase reporter mix constructs according to 

manufacturer’s protocol using Lipofectamine 2000 (Life Technologies, Grand Island, NY, USA).  

 In shRNA knockdown co-transfection experiments using luciferase assays to examine the 

effect of wild type MAP3K1 and point mutations in MAP3K1, NT2/D1 cells were plated in 40–

50% density in 24-well plates and 2.5 ng/well MAP3K1 constructs or control DNA were 

transfected together with reporter plasmid and internal control plasmid several hours after 

seeding. 

 

Quantitative RT-PCR (qRT-PCR) 

qRT-PCR experiments were analyzed in a VIAA7 real-time PCR detection system (Life 

Technologies, Grand Island, NY, USA) using Taqman gene expression master mix (Life 

Technologies, Grand Island, NY, USA). Values were normalized using β-actin as a control. The 

following Taqman assays were used for examining the effect of MAP3K1, RHOA, and MAP3K4 

after transfections:  

Taqman Gene Expression Assay ID Target gene 

HS00394890 MAP3K1 

HS00245958 MAP3K4 

KS00165814 SOX9 

HS01552926 FGFR2 
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HS00181829 FGF9 

HS00355049 CTNNB1 (β-catenin) 

HS00357608 RHOA 

HS99999903 ACTB 

HS00846401 FOXL2 

Hs00976796 SRY 

 

Site-directed mutagenesis-MAP3K1 mutants were generated using the Quick Change 

Site-Directed Mutagenesis II kit (Stratagene, Cedar Creek, TX, USA). Wild type full-length wild 

type MAP3K1 expression vector (a kind gift from Dr. Michael Karin) was used as a template for 

PCR based mutagenesis with primer arms flanking 22 bases on each side of the mutation site.  

 

Data analysis 

Comparison of differences between Cignal luciferase activity assay and qRT-PCR 

expression was performed using the two-tailed Student t-test (where equal variance between 

groups was assumed). A p-value <0.05 was considered statistically significant. 
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LEGENDS TO FIGURES 
 
FIGURE 1. (A) MAP3K1 mutations reported in this study include missense (p.P153L, p.L189R, 

p.L189P, p.K246E) and splicing (c.634-8T>A and c.2180-2A>G).  The c.634-8T>A  mutation 

creates a novel splice acceptor site that results in the insertion of two amino acids residues in-

frame between codons 211 and 212 (15). The c.2180-2A>G mutation results in use of a cryptic 

acceptor at c.2283_2284; chr5:56177013-5617714 (UCSC hg19) with loss of 34 amino acid 

residues in-frame between codons 727 and 761.  

(B) Pedigree of multiple individuals with biopsy‐proven 46,XY gonadal dysgenesis and 

MAP3K1 c.2180‐2A>G mutation (II‐3, II‐4 and III‐1). All three individuals with 46,XY 

mutations had an unvirilized female phenotype and dysgenetic gonads at histology. The uterus of 

Subject II‐3 was observed at laparoscopy and Subjects II‐3 and II‐4 had elevated LH and FSH. 

Individual II‐2 was an unaffected 46,XX carrier. Sanger sequencing demonstrated the 

heterozygous splicing site mutation in subject II‐3.  

(C) The mutation was predicted to affect splicing in one of three ways ‐‐ 1. skipping of exon 13 

(causing a frameshift insertion of a STOP codon after 7 amino acids, resulting in complete loss 

of the kinase domain (c.2180_2369del; p.Ser728Ilefs*8), 2. use of a cryptic acceptor site within 

exon 13 (c.2283_2284 AG;g.56177013‐5617714AG). In this case the mutated mRNA would lose 

the first 105 nucleotides of exon 13 (c.2180_2284del), preserving the open reading frame and 

resulting in a protein with the first 35 amino acids of exon 13 deleted (p.Gly727_Ile761del), or 3. 

a normal transcript. RT‐PCR with primers external to the exons involved in the mutations results 

in two bands corresponding by size to the wild type and to the form that uses the cryptic acceptor 

splice site internal to exon 13. Cloning of the RT‐PCR product and sequencing of colonies 
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showed the presence of both variant splicing forms (using the cryptic acceptor site internal to 

exon 13 and exon 13 skipping) along with the wild type form. 

 

FIGURE 2. Mutations in MAP3K1 increase RHOA, MAP3K4, FRAT1 and AXIN1 affinity to 

MAP3K1 and phosphorylation of ERK1/2 protein. Two MAP3K1 mutations (p.L189P and 

p.P153L) alter the binding of RHOA, MAP3K4, FRAT1, and AXIN1 and phosphorylation of 

ERK1/2 in mutant LCLs, whereas the p.K246E variant affects only MAP3K4 binding.  

(A) Standard Western blot analysis using primary LCLs bearing p.L189P, p.P153L MAP3K1 

mutations showed increased phosphorylation of ERK1/2 protein. Co-immunoprecipitation of 

these lysates, where MAP3K1 was the bait, showed increased affinity to RHOA and FRAT1 

(probe antibodies).  The p.K246E variant did not have an effect that varied from wild type LCLs. 

Histone as loading control, and MAP3K1 as input control. 

(B) Flow variant analysis (FVA) using primary wild type LCLs or those bearing p.L189P and 

p.153L mutations or p.K246E variant was performed using MAP3K1 as bait and showed 

increased binding to RHOA (Y-axis, and as shown in A) and MAP3K4 (X-axis). Pseudo primary 

colors were assigned using FLOWJO 6.0 for each target, MAP3K4-Green, RHOA-Red, and 

MAP3K1-Blue. If all three targets are present on the target bead in equal ratio, a white pixel is 

generated against the black background. 

(C) Quantification of FVA fluorescence intensity for MAP3K4 (Solid black bar) and RHOA 

(Grey bar) binding to MAP3K1 and normalized to MAP3K1 input fluorescence (Y axis is 

normalized fluorescent events) and compared in a pairwise fashion by Student’s T test shown as 

*p<0.05, and **p<0.005. The binding of MAP3K4 and RHOA was increased for all three 

variants/mutations, yet significantly higher for the p.L189P and p.P153L mutations.  
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(D) Flow variant analysis using primary wild type or mutant LCLs was performed using 

MAP3K1 as bait and showed increased binding to FRAT1 (Y-axis, and as shown in A) and 

AXIN1 (X-axis) for those bearing the p.L189P and p.153L mutations, but not the p.K246E 

variant. Pseudo primary colors were assigned using FLOWJO 6.0 for each target, FRAT1-Green, 

AXIN1-Red, and MAP3K1-Blue. If all three targets are present on the target bead in equal ratio, 

a white pixel is generated against the black background. If only AXIN1 and MAP3K1 are 

present on the target bead a pink pixel is generated. 

 

FIGURE 3. Transfected NT2/D1 cells using with expression plasmids bearing wild type or 

mutant MAP3K1 cDNAs shows similar increased phosphorylation of p38 protein. Mutations in 

MAP3K1 increase RHOA affinity to MAP3K1 when transfected with any of the three mutant 

MAP3K1 (p.L189R, p.L189P, and c.634-8A) cDNAs.  

(A) Standard Western blot analysis using primary LCLs and transfected NT2/D1 cells bearing 

p.L189P, p.L189R, and c.634-8A mutations showed increased phosphorylation of p38, histone as 

loading control.  

(B) Transfected NT2/D1 cells analyzed by modified flow cytometry to detect phosphorylated 

protein abundance analysis (digital cell Western-DCW: See methods) demonstrated increased 

phosphorylation of p38 in p.L189P mutation-bearing versus wild type cells (55.1 versus 26.6 

normalized fluorescent unit of phospho-p38 respectively).  

(C) FVA performed on NT2/D1 cells transfected with expression plasmids bearing wild type or 

mutant (p.L189R, p.L189P, and c.634-8A) MAP3K1 cDNAs, followed by overnight flow-based 
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immunoprecipitation using MAP3K1 as bait and showed increased binding to RHOA (Y-axis) 

normalized to MAP3K1 input fluorescence, compared to Forward Scatter (FSC-A) (X-axis).  

(D) FVA quantification of RHOA binding to MAP3K1 normalized to MAP3K1 (Y axis is 

normalized fluorescent events) and compared in a pairwise fashion by Student’s T test, *p<0.05, 

and **p<0.001. The binding of RHOA to MAP3K1 in NT2/D1 cells was increased for mutant 

transfected compared to wild type transfected cells.  
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FIGURE 4. Mutations in MAP3K1 decrease SOX9 mRNA transcripts and protein and increase β 

-catenin mRNA transcripts and protein in transfected NT2/D1 cells. Mutant transfected NT2/D1 

cells can be rescued by cotransfection with MAP3K4 cDNA. qPCR and DCW analyses of mRNA 

and protein, respectively, at 24 hours of NT2/D1 cells transfected with expression plasmids 

bearing wild-type or mutant (p.L189R, p.L189P, and c.634-8A) cDNAs with or without co-

transfection with MAP3K4. For Taqman qPCR, results were normalized to housekeeping gene, 

GAPDH, and compared to control NT2/D1 cells transfected with empty plasmids by Student’s T 

test, *p<0.05, and **p<0.005.  

(A) Quantification of normalized SOX9 mRNA expression by Taqman qPCR (Y axis is fold 

change relative to empty plasmids) and compared in a pairwise fashion. The mRNA expression 

of SOX9 was decreased for all three mutations and was rescued by co-transfection with wild 

type MAP3K4 (p=0.0002 for the mutant group versus wild type).  

(B) Quantification of normalized SOX9 protein expression (Y axis is fold change relative to 

empty plasmids) and compared in a pairwise fashion.   The protein expression of SOX9 was 

decreased when either three mutations were transfected and was rescued by co-transfection with 

wild type MAP3K4 (p= 0.0003 for the mutant group versus wild type).  

(C) Quantification of normalized β-catenin mRNA expression (Y axis is fold change relative to 

empty plasmids) and compared in a pairwise fashion.   The mRNA expression of β-catenin was 

increased for all three mutations and was rescued by co-transfection with wild type MAP3K4 

(p=1.9 X 10-16 for the mutant group versus wild type).  

(D) Quantification of normalized β-catenin protein expression (Y axis is fold change relative to 

empty plasmids) and compared in a pairwise fashion. The protein expression of β-catenin was 
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increased for all three mutant transfected and was rescued by co-transfection with wild type 

MAP3K4 (p= 0.005 for the mutant group versus wild type). 

FIGURE 5. Overexpression of mutant MAP3K1 increases FOXL2 and decreases FGF9 and 

FGFR2 mRNA levels and increases of TCF dual luciferase reporter activity relative to wild type. 

qPCR analysis of mRNA at 24 hours of NT2/D1 cells transfected with expression plasmids 

bearing wild-type or either mutants (p.L189R, p.L189P, and c.634-8A) cDNAs, a rescue 

cotransfection is performed along side with MAP3K4 for each mutant. Taqman qPCR results 

were normalized to housekeeping gene, GAPDH, and compared to control NT2/D1 cells 

transfected with empty plasmids by Student’s T test, *p<0.05, and**p<0.005.  

 (A) Quantification of normalized TCF/LEF dual reporter luciferase activity (Y axis is 

normalized Relative Luciferase Units) and compared in a pairwise fashion (Mutant vs. rescued 

mutant). Control-3 is the triplicate pool of untreated NT2/D1 cells. The luciferase reporter 

activity assayed at 48 hours following transfection showed marked increase in all three 

mutatants. Overexpression of RHOA similarly increased reporter activity.  Knockdown of 

RHOA or MAP3K1 by either siRNAs abrogated the reporter activity.  In separate experiments, 

co-transfection of any of the three mutants with MAP3K4 rescued their phenotypes, observed as 

marked reduction of the reporter activity found in mutants.  Co-transfection of TCF luciferase 

reporter with Stealth siRNA to RHOA or MAP3K1 abrogated the reporter activities. (B) 

Quantification of normalized FGFR2 expression (Y axis is fold change relative to empty 

plasmids) and compared in a pairwise fashion. The expression of FGFR2 was decreased for all 

three mutations and FGFR2 expression was rescued by co-transfection with wild type MAP3K4 

into mutants.  
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(C) Quantification of normalized FGF9 expression (Y axis is fold change relative to empty 

plasmids) and compared in a pairwise fashion. The expression of FGF9 was dramatically 

decreased when NT2/D1 cells were transfected with any of the three mutants. FGF9 expression 

levels were restored in all mutants’ transfected cells when MAP3K4 was added in separate co-

transfection experiments.  

 (D) Quantification of normalized FOXL2 mRNA expression (Y axis is fold change relative to 

empty plasmids) and compared in a pairwise fashion. The expression of FOXL2 was increased 

for all three mutant transfected NT2/D1 cells, with the highest marked increase observed in 

C634-8A mutant. MAP3K4 was cotransfected with each mutant in separate experiments showing 

phenotype rescue similar to wild type.  

   

FIGURE 6. Over and under expression of MAP3K4 or RHOA modulates SOX9 and β-catenin 

mRNA expression levels. Taqman qPCR analysis performed after 24 hours for all transfected 

NT2/D1 cells with MAP3K4 or RHOA expression plasmids and/or siRNA to RHOA or MAP3K4. 

All results were normalized to housekeeping gene, GAPDH, and compared to control NT2/D1 

cells transfected with empty plasmids by Student’s T test, *p<0.05, and **p<0.005.  

(A) Quantification of normalized SOX9 mRNA expression (Y axis is fold change relative to 

transfected cells with empty plasmids) and compared in a pairwise fashion (Overexpression vs 

siRNA). The expression of SOX9 was increased by RHOA inhibition and MAP3K4 

overexpression and marked decrease when NT2/D1 cells were transfected with RHOA cDNA or 

MAP3K4 siRNA mRNA.  
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(B) Quantification of normalized β-catenin expression (Y axis is fold change relative to 

transfected cells with empty plasmids) and compared in a pairwise fashion (Overexpression vs 

siRNA). The expression of β-catenin was increased when NT2/D1 cells were transfected with 

RHOA cDNA or MAP3K4 siRNA. Conversely, cells transfected with RHOA siRNA t or 

MAP3K4 cDNA showed dramatic decrease of β-catenin expression.  

(C) Transfection of wild type or mutant MAP3K1 or MAP3K4 cDNAs modulate SRY mRNA 

expression levels. qPCR analysis of mRNA at 24 hours after in NT2/D1 cells co‐transfected with 

MAP3K1 or mutant MAP3K1s with MAP3K4 and RHOA or siRNA to RHOA with MAP3K4 

expression plasmids. For the qPCR experiments, the results were normalized to the housekeeping 

gene, GAPDH, and compared to control NT2/D1 cells transfected with empty plasmids by 

Student’s T test, p<0.001, and **p<0.0001. Bar graph quantification of normalized SRY mRNA 

expression levels (Y axis is fold change relative quantity to empty plasmids). The expression of 

SRY mRNA was markedly decreased when transfected with mutant MAP3K1cDNAs. Cells 

transfected with wild‐type MAP3K1 cDNAs and cotransfected with MAP3K4 showed dramatic 

increases in SRY expression. The greatest reduction of SRY was observed for mutant c.634‐8A 

transfected cells (77%), followed by p.L189P (65%), and for p.L189R (52%). When MAP3K4 

was co‐transfected in a separate rescue experiments, SRY mRNA levels were restored compared 

to mutant only transfections. Expression of SRY increased above wild‐type levels in mutant 

C634-8A and L189R cotransfected with MAP3K4.When MAP3K4 was cotransfected with 

RHOA, the effect on SRY expression was normalized to wild type levels. Similarly, a restorative 

increase of SRY expression was observed when MAP3K4 was cotransfected with siRNA to 

RHOA. 
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FIGURE 7. Role of MAP3K1 cofactors and downstream targets in promoting gonadal 

determination. Testis-promoting factors are shown in blue and ovary-promoting factors are 

shown in red. Factors that promote the action of a downstream target are shown as arrows. 

Factors that block the action of a downstream target are shown as red lines ending in bars. 

 

Male development: SRY, RAC1 (data not shown), MAP3K4 and AXIN1 all promote the 

expression of SOX9 and, through a feed-forward loop, FGF9. SOX9, AXIN1, and GSK3β 

promote the destabilization of β-catenin and, thus, create a block to ovarian development.  

 

Female development: RHOA, phosphorylated p38 and ERK1/2, and FOXL2 down regulate the 

expression of SOX9 and, thus, the resulting feed-forward loop and block to ovarian 

development. Phosphorylated p38 and ERK1/2 and AXIN1 (via destabilized GSK3β) and 

FRAT1 promote the stabilization of β-catenin and the up regulation of the downstream targets, 

FOXL2 and FST. Possible sequestration of AXIN1 and MAP3K4 onto mutant MAP3K1 

enhance β-catenin stabilization. Gain-of-function mutations in the MAP3K1 gene mimic the 

ovarian determining pathway, overriding the testis-determining signal from an expressed, wild 

type SRY gene. 
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ABBREVIATIONS 

FVA - Flow Variant Assay, a flow cytometry-based method for performing Western blots on 

beads. 

DCW - Digital Cell Western, an in situ method of performing Western blot analysis in fixed and 

permeabilized cells using flow cytometry 

NT2/D1 - The parental NTERA-2 cl.D1 lines from a nude mouse xenograft of the Tera-2 cell 

line 
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