136 research outputs found

    Spin injection and relaxation in a mesoscopic superconductor

    Full text link
    We study spin accumulation and spin relaxation in a superconducting nanowire. Spins are injected and detected by using a set of magnetic tunnel contact electrodes, closely spaced along the nanowire. We observe a giant enhancement of the spin accumulation of up to five orders of magnitude on transition into the superconducting state, consistent with the expected changes in the density of states. The spin relaxation length decreases by an order of magnitude from its value in the normal state. These measurements combined with our theoretical model, allow us to distinguish the individual spin flip mechanisms present in the transport channel. Our conclusion is that magnetic impurities rather than spin-orbit coupling dominate spin-flip scattering in the superconducting state.Comment: 5 pages, 5 figure

    Boltzmann Equations for Spin and Charge Relaxations in Superconductors

    Full text link
    In a superconductor coupled with a ferromagnetic metal, spin and charge imbalances can be induced by injecting spin-polarized electron current from the ferromagnetic metal. We theoretically study a nonequilibrium distribution of quasiparticles in the presence of spin and charge imbalances. We show that four distribution functions are needed to characterize such a nonequilibrium situation, and derive a set of linearized Boltzmann equations for them by extending the argument by Schmid and Sch\"{o}n based on the quasiclassical Green's function method. Using the Boltzmann equations, we analyze the spin imbalance in a thin superconducting wire weakly coupled with a ferromagnetic electrode. The spin imbalance induces a shift δμ\delta\mu (δμ- \delta \mu) of the chemical potential for up-spin (down-spin) quasiparticles. We discuss how δμ\delta \mu is relaxed by spin-orbit impurity scattering.Comment: 16 pages, 2 figure

    Mistletoe lectin is not the only cytotoxic component in fermented preparations of Viscum album from white fir (Abies pectinata)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preparations of mistletoe (<it>Viscum album</it>) are the form of cancer treatment that is most frequently used in the complementary medicine. Previous work has shown that these preparations are able to exert cytotoxic effects on carcinoma cells, the extent of which might be influenced by the host tree species and by the content of mistletoe lectin.</p> <p>Methods</p> <p>Using colorimetric assays, we have now compared the cytotoxic effects of <it>Viscum album </it>preparations (VAPs) obtained from mistletoe growing on oak (<it>Quercus robur </it>and <it>Q. petraea</it>, VAP-Qu), apple tree (<it>Malus domestica</it>,, VAP-M), pine (<it>Pinus sylvestris</it>, VAP-P) or white fir (<it>Abies pectinata</it>, VAP-A), on the <it>in vitro </it>growth of breast and bladder carcinoma cell lines. While MFM-223, KPL-1, MCF-7 and HCC-1937 were the breast carcinoma cell lines chosen, the panel of tested bladder carcinoma cells comprised the T-24, TCC-SUP, UM-UC-3 and J-82 cell lines.</p> <p>Results</p> <p>Each of the VAPs inhibited cell growth, but the extent of this inhibition differed with the preparation and with the cell line. The concentrations of VAP-Qu, VAP-M and VAP-A which led to a 50 % reduction of cell growth (IC<sub>50</sub>) varied between 0.6 and 0.03 mg/ml. Higher concentrations of VAP-P were required to obtain a comparable effect. Purified mistletoe lectin I (MLI) led to an inhibition of breast carcinoma cell growth at concentrations lower than those of VAPs, but the sensitivity towards purified MLI did not parallel that towards VAPs. Bladder carcinoma cells were in most cases more sensitive to VAPs treatment than breast carcinoma cells. The total mistletoe lectin content was very high in VAP-Qu (54 ng/mg extract), intermediate in VAP-M (25 ng/mg extract), and very low in VAP-P (1.3 ng/mg extract) and in VAP-A (1 ng/mg extract). As to be expected from the low content of mistletoe lectin, VAP-P led to relatively weak cytotoxic effects. Most remarkably, however, the lectin-poor VAP-A revealed a cytotoxic effect comparable to, or even stronger than, that of the lectin-rich VAP-Qu, on all tested bladder and breast carcinoma cell lines.</p> <p>Conclusion</p> <p>The results suggest the existence of cytotoxic components other than mistletoe lectin in VAP-A and reveal an unexpected potential of this preparation for the treatment of breast and bladder cancer.</p

    Isospin Violation in Chiral Perturbation Theory and the Decays \eta \ra \pi \ell \nu and \tau \ra \eta \pi \nu

    Full text link
    I discuss isospin breaking effects within the standard model. Chiral perturbation theory presents the appropriate theoretical framework for such an investigation in the low--energy range. Recent results on the electromagnetic contributions to the masses of the pseudoscalar mesons and the K3K_{\ell 3} amplitudes are reported. Using the one--loop formulae for the η3\eta_{\ell 3} form factors, rather precise predictions for the decay rates of ηπν\eta \rightarrow \pi \ell \nu can be obtained. Finally, I present an estimate of the \tau \ra \eta \pi \nu branching ratio derived from the dominant meson resonance contributions to this decay.Comment: 10 pages, latex, one figure available upon reques

    The decay pi0 to gamma gamma to next to leading order in Chiral Perturbation Theory

    Get PDF
    The two photon decay width of the neutral pion is analyzed within the combined framework of Chiral Perturbation Theory and the 1/Nc expansion up to order p^6 and p^4 times 1/Nc in the decay amplitude. The eta' is explicitly included in the analysis. It is found that the decay width is enhanced by about 4.5% due to the isospin-breaking induced mixing of the pure U(3) states. This effect, which is of leading order in the low energy expansion, is shown to persist nearly unchanged at next to leading order. The chief prediction for the width with its estimated uncertainty is 8.10+-0.08 eV. This prediction at the 1% level makes the upcomming precision measurement of the decay width even more urgent. Observations on the eta and eta' can also be made, especially about their mixing, which is shown to be significantly affected by next to leading order corrections.Comment: 21 pages, two figure

    Shape modeling technique KOALA validated by ESA Rosetta at (21) Lutetia

    Full text link
    We present a comparison of our results from ground-based observations of asteroid (21) Lutetia with imaging data acquired during the flyby of the asteroid by the ESA Rosetta mission. This flyby provided a unique opportunity to evaluate and calibrate our method of determination of size, 3-D shape, and spin of an asteroid from ground-based observations. We present our 3-D shape-modeling technique KOALA which is based on multi-dataset inversion. We compare the results we obtained with KOALA, prior to the flyby, on asteroid (21) Lutetia with the high-spatial resolution images of the asteroid taken with the OSIRIS camera on-board the ESA Rosetta spacecraft, during its encounter with Lutetia. The spin axis determined with KOALA was found to be accurate to within two degrees, while the KOALA diameter determinations were within 2% of the Rosetta-derived values. The 3-D shape of the KOALA model is also confirmed by the spectacular visual agreement between both 3-D shape models (KOALA pre- and OSIRIS post-flyby). We found a typical deviation of only 2 km at local scales between the profiles from KOALA predictions and OSIRIS images, resulting in a volume uncertainty provided by KOALA better than 10%. Radiometric techniques for the interpretation of thermal infrared data also benefit greatly from the KOALA shape model: the absolute size and geometric albedo can be derived with high accuracy, and thermal properties, for example the thermal inertia, can be determined unambiguously. We consider this to be a validation of the KOALA method. Because space exploration will remain limited to only a few objects, KOALA stands as a powerful technique to study a much larger set of small bodies using Earth-based observations.Comment: 15 pages, 8 figures, 2 tables, accepted for publication in P&S

    Gauge-invariant Green's functions for the bosonic sector of the standard model

    Get PDF
    There are many applications in gauge theories where the usually employed framework involving gauge-dependent Green's functions leads to considerable problems. In order to overcome the difficulties invariably tied to gauge dependence, we present a manifestly gauge-invariant approach. We propose a generating functional of appropriately chosen gauge-invariant Green's functions for the bosonic sector of the standard model. Since the corresponding external sources emit one-particle states, these functions yield the same S-matrix elements as those obtained in the usual framework. We evaluate the generating functional for the bosonic sector of the standard model up to the one-loop level and carry out its renormalization in the on-shell scheme. Explicit results for some two-point functions are given. Gauge invariance is manifest at any step of our calculation.Comment: 29 pages, Revtex. v2: Discussions improved, conclusions unchanged. Some references added. v3: Published versio

    The Electromagnetic Mass Differences of Pions and Kaons

    Get PDF
    We use the Cottingham method to calculate the pion and kaon electromagnetic mass differences with as few model dependent inputs as possible. The constraints of chiral symmetry at low energy, QCD at high energy and experimental data in between are used in the dispersion relation. We find excellent agreement with experiment for the pion mass difference. The kaon mass difference exhibits a strong violation of the lowest order prediction of Dashen's theorem, in qualitative agreement with several other recent calculations.Comment: 40 pages, Latex, needs axodraw. and psfig. macros, 4 figure

    Pion and Kaon Vector Form Factors

    Get PDF
    We develop a unitarity approach to consider the final state interaction corrections to the tree level graphs calculated from Chiral Perturbation Theory (χPT\chi PT) allowing the inclusion of explicit resonance fields. The method is discussed considering the coupled channel pion and kaon vector form factors. These form factors are then matched with the one loop χPT\chi PT results. A very good description of experimental data is accomplished for the vector form factors and for the ππ\pi\pi P-wave phase shifts up to s1.2\sqrt{s}\lesssim 1.2 GeV, beyond which multiparticle states play a non negligible role. In particular the low and resonance energy regions are discussed in detail and for the former a comparison with one and two loop χPT\chi PT is made showing a remarkable coincidence with the two loop χPT\chi PT results.Comment: 20 pages, 7 figs, to appear in Phys. Rev.
    corecore