492 research outputs found

    Bean Counters: The Effect of Soy Tariffs on Change in Republican Vote Share Between the 2016 and 2018 Elections.

    Get PDF
    How do trade wars affect presidential support? President Trump\u27s aggressive tariffs on China despite his largely rural electoral support base provide a unique opportunity to analyze the relationship between international trade policy and domestic support. If trade-related considerations were ever decisive to American voters, the stark decrease in soy prices, a direct effect of Trump-initiated tariffs immediately preceding the 2018 midterm election, serves as a critical test for studying their effect. This letter shows a robust inverse relationship between county-level soybean production and the change in Republican vote share between the 2016 and 2018 congressional elections

    Large scale patterns of genetic variation and differentiation in sugar maple from tropical Central America to temperate North America

    Get PDF
    © 2015 Vargas-Rodriguez et al. Background: Geological events in the latter Cenozoic have influenced the distribution, abundance and genetic structure of tree populations in temperate and tropical North America. The biogeographical history of temperate vegetation that spans large ranges of latitude is complex, involving multiple latitudinal shifts that might have occurred via different migration routes. We determined the regional structuring of genetic variation of sugar maple (Acer saccharum subsp. saccharum) and its only subspecies in tropical America (Acer saccharum subsp. skutchii) using nuclear and chloroplast data. The studied populations span a geographic range from Maine, USA (46°N), to El Progreso, Guatemala (15°N). We examined genetic subdivisions, explored the locations of ancestral haplotypes, analyzed genetic data to explore the presence of a single or multiple glacial refugia, and tested whether genetic lineages are temporally consistent with a Pleistocene or older divergence. Results: Nuclear and chloroplast data indicated that populations in midwestern USA and western Mexico were highly differentiated from populations in the rest of the sites. The time of the most recent common ancestor of the western Mexico haplotype lineage was dated to the Pliocene (5.9 Ma, 95 % HPD: 4.3-7.3 Ma). Splits during the Pleistocene separated the rest of the phylogroups. The most frequent and widespread haplotype occurred in half of the sites (Guatemala, eastern Mexico, southeastern USA, and Ohio). Our data also suggested that multiple Pleistocene refugia (tropics-southeastern USA, midwestern, and northeastern USA), but not western Mexico (Jalisco), contributed to post-glacial northward expansion of ranges. Current southern Mexican and Guatemalan populations have reduced population sizes, genetic bottlenecks and tend toward homozygosity, as indicated using nuclear and chloroplast markers. Conclusions: The divergence of western Mexican populations from the rest of the sugar maples likely resulted from orographic and volcanic barriers to gene flow. Past connectivity among populations in the southeastern USA and eastern Mexico and Guatemala possible occurred through gene flow during the Pleistocene. The time to the most common ancestor values revealed that populations from the Midwest and Northeast USA represented different haplotype lineages, indicating major divergence of haplotypes lineages before the Last Glacial Maximum and suggesting the existence of multiple glacial refugia

    Childhood Granulomatous Periorificial Dermatitis

    Get PDF
    Childhood granulomatous periorificial dermatitis (CGPD), also known as facial Afro-Caribbean childhood eruption (FACE), is a distinctive granulomatous form of perioral dermatitis. It is a condition of unknown etiology, characterized by monomorphous, small, papular eruptions around the mouth, nose and eyes that histopathologically show a granulomatous pattern. It affects prepubescent children of both sexes and typically persists for several months but resolved without scarring. We report a 9 year-old girl with multiple, discrete, monomorphic, papular eruptions of 2-months duration on the perioral and periocular areas. Histopathological examination demonstrated upper dermal and perifollicular granulomatous infiltrate

    The topography of transmembrane segment six is altered during the catalytic cycle of P-glycoprotein

    Get PDF
    Structural evidence has demonstrated that P-glycoprotein (P-gp) undergoes considerable conformational changes during catalysis, and these alterations are important in drug interaction. Knowledge of which regions in P-gp undergo conformational alterations will provide vital information to elucidate the locations of drug binding sites and the mechanism of coupling. A number of investigations have implicated transmembrane segment six (TM6) in drug-P-gp interactions, and a cysteine-scanning mutagenesis approach was directed to this segment. Introduction of cysteine residues into TM6 did not disturb basal or drug-stimulated ATPase activity per se. Under basal conditions the hydrophobic probe coumarin maleimide readily labeled all introduced cysteine residues, whereas the hydrophilic fluorescein maleimide only labeled residue Cys-343. The amphiphilic BODIPY-maleimide displayed a more complex labeling profile. The extent of labeling with coumarin maleimide did not vary during the catalytic cycle, whereas fluorescein maleimide labeling of F343C was lost after nucleotide binding or hydrolysis. BODIPY-maleimide labeling was markedly altered during the catalytic cycle and indicated that the adenosine 5'-(beta,gamma-imino)triphosphate-bound and ADP/vanadate-trapped intermediates were conformationally distinct. Our data are reconciled with a recent atomic scale model of P-gp and are consistent with a tilting of TM6 in response to nucleotide binding and ATP hydrolysis

    Asymmetry in inward- and outward-affinity constant of transport explain unidirectional lysine flux in Saccharomyces cerevisiae

    Get PDF
    Contains fulltext : 171926.pdf (publisher's version ) (Open Access)The import of basic amino acids in Saccharomyces cerevisiae has been reported to be unidirectional, which is not typical of how secondary transporters work. Since studies of energy coupling and transport kinetics are complicated in vivo, we purified the major lysine transporter (Lyp1) of yeast and reconstituted the protein into lipid vesicles. We show that the Michaelis constant (KM) of transport from out-to-in is well in the millimolar range and at least 3 to 4-orders of magnitude higher than that of transport in the opposite direction, disfavoring the efflux of solute via Lyp1. We also find that at low values of the proton motive force, the transport by Lyp1 is comparatively slow. We benchmarked the properties of eukaryotic Lyp1 to that of the prokaryotic homologue LysP and find that LysP has a similar KM for transport from in-to-out and out-to-in, consistent with rapid influx and efflux. We thus explain the previously described unidirectional nature of lysine transport in S. cerevisiae by the extraordinary kinetics of Lyp1 and provide a mechanism and rationale for previous observations. The high asymmetry in transport together with secondary storage in the vacuole allow the cell to accumulate basic amino acids to very high levels
    • …
    corecore