203 research outputs found

    Patterns of sexual behaviour: the law of evidence: back to the future in Australia and England

    Get PDF
    A recent Victorian Court of Appeal ruling [in Australia] has sparked concerns that a clamp down on the way child abuse cases are handled could thwart convictions. The Court of Appeal justices ruled only cases that are "remarkably" similar would go before the same jury, making it harder for allegations from multiple complainants to be heard together. There are concerns that this will reduce the number of convictions for sexual offences, especially for those against children. This article explores the approach in England and Wales, and Australia to evidence of a pattern of behaviour, focussing on when it is adduced in cases involving sexual abuse. We first consider the shared common law history of the two jurisdictions before exploring how common law and legislative changes have led to surprisingly different positions in the two countries. We conclude by suggesting a simpler and more rational approach which has started to emerge and could be adopted in both countries, and indeed should be considered in any jurisdiction

    Copyright, Crime and Computers: New Legislative Frameworks for Intellectual Property Rights Enforcement

    Full text link
    This paper considers intellectual property rights (IPR) enforcement from the perspective of criminal law, and in particular, drawing on recent Australian legislative reforms concerning copyright, cybercrime, covert investigations, mutual assistance and extradition, prosecution and sentencing options, as well as proceeds of crime recovery.Ă‚ The complex interaction of these laws suggests that the field of IPR enforcement offers numerous investigative, prosecutorial and judicial options beyond those traditionally associated with copyright infringement.Ă‚ Cases discussed include several prosecutions of file-sharing website operators, and the extradition from Australia of a suspect in an International online piracy group prosecution led by the United States Department of Justice

    On the Regularity of Optimal Transportation Potentials on Round Spheres

    Full text link
    In this paper the regularity of optimal transportation potentials defined on round spheres is investigated. Specifically, this research generalises the calculations done by Loeper, where he showed that the strong (A3) condition of Trudinger and Wang is satisfied on the round sphere, when the cost-function is the geodesic distance squared. In order to generalise Loeper's calculation to a broader class of cost-functions, the (A3) condition is reformulated via a stereographic projection that maps charts of the sphere into Euclidean space. This reformulation subsequently allows one to verify the (A3) condition for any case where the cost-fuction of the associated optimal transportation problem can be expressed as a function of the geodesic distance between points on a round sphere. With this, several examples of such cost-functions are then analysed to see whether or not they satisfy this (A3) condition.Comment: 24 pages, 4 figure

    Investigating diagrammatic reasoning with deep neural networks

    Get PDF
    Diagrams in mechanised reasoning systems are typically en- coded into symbolic representations that can be easily processed with rule-based expert systems. This relies on human experts to define the framework of diagram-to-symbol mapping and the set of rules to reason with the symbols. We present a new method of using Deep artificial Neu- ral Networks (DNN) to learn continuous, vector-form representations of diagrams without any human input, and entirely from datasets of dia- grammatic reasoning problems. Based on this DNN, we developed a novel reasoning system, Euler-Net, to solve syllogisms with Euler diagrams. Euler-Net takes two Euler diagrams representing the premises in a syl- logism as input, and outputs either a categorical (subset, intersection or disjoint) or diagrammatic conclusion (generating an Euler diagram rep- resenting the conclusion) to the syllogism. Euler-Net can achieve 99.5% accuracy for generating syllogism conclusion. We analyse the learned representations of the diagrams, and show that meaningful information can be extracted from such neural representations. We propose that our framework can be applied to other types of diagrams, especially the ones we don’t know how to formalise symbolically. Furthermore, we propose to investigate the relation between our artificial DNN and human neural circuitry when performing diagrammatic reasoning

    Bubble Formation in Additive Manufacturing of Borosilicate Glass

    Get PDF
    Entrapped bubbles are an important problem in conventional glass manufacturing. It is also a significant factor determining the quality of glass products produced using additive manufacturing (AM). This paper reports on the bubble formation and entrapment in filament-fed AM printing of borosilicate glass. This process involves maintaining a local molten region using a CO2 laser. A 2 mm filament is fed continuously into the molten region while CNC stages position the workpiece relative to the laser and filament feed. Two different bubble regimes are identified in experiments with borosilicate glass. These regimes can be related to different physical phenomena, specifically, bubble entrapment at defects in the filaments and bubble formation due to reboil. These can be overcome by selecting defect free filaments and by minimizing the temperature inside the molten region to prevent breaking down the glass. Understanding these mechanisms allows bubble-free glass to be printed. Finally, residual stress in the deposited glass pieces is removed using post-deposition annealing and validated using a polariscope

    Solid Freeform Fabrication of Transparent Fused Quartz using a Filament Fed Process

    Get PDF
    Glass is a critical material for many scientific and engineering applications including optics, communications, electronics, and hermetic seals. Despite this technological relevance, there has been minimal research toward Additive Manufacturing (AM) of glass, particularly optically transparent glass. Additive Manufacturing of transparent glass offers potential advantages for lower processing costs for small production volumes, increased design freedom, and the ability to locally vary the optical properties of the part. Compared to common soda lime glass, fused quartz is better for AM since it has lower thermal expansion and higher index homogeneity. This paper presents a study of additive manufacturing of transparent fused quartz by a filament fed process. A CW CO2 laser (10.6 µm) is used to melt glass filaments layer by layer. The laser couples to phononic modes in the glass and is well absorbed. The beam and melt pool are stationary while the work piece is scanned using a standard lab motion system. Representative parts are built to explore the effects of variable laser power on the properties of printed fused quartz. During printing the incandescent emission from the melt pool is measured using a spectrometer. This permits process monitoring and identifies potential chemical changes in the glass during printing. After deposition, the printed parts are polished and the transmission measured to calculate the absorption/scattering coefficient. Finally, a low-order thermal analysis is presented and correlated to experimental results, including an energy balance and finite volume analysis using Fluent. These results suggest that optical quality fused quartz parts with low absorption and high index of refraction uniformity may be printed using the filament-fed process

    Additive Manufacturing of Transparent Fused Quartz

    Get PDF
    This paper investigates a filament-fed process for additive manufacturing (AM) of fused quartz. Glasses such as fused quartz have significant scientific and engineering applications, which include optics, communications, electronics, and hermetic seals. AM has several attractive benefits such as increased design freedom, faster prototyping, and lower processing costs for small production volumes. However, current research into glass AM has focused primarily on nonoptical applications. Fused quartz is studied here because of its desirability for use in high-quality optics due to its high transmissivity and thermal stability. Fused quartz filaments are fed into a CO2 laser-generated molten region, smoothly depositing material onto the workpiece. Spectroscopy and pyrometry are used to measure the thermal radiation incandescently emitted from the molten region. The effects of the laser power and scan speed are determined by measuring the morphology of single tracks. Thin walls are printed to study the effects of layer-to-layer height. This information is used to deposit solid pieces including a cylindrical-convex shape capable of focusing visible light. The transmittance and index homogeneity of the printed fused quartz are measured. These results show that the filament-fed process has the potential to print transmissive optics

    Accessible reasoning with diagrams: From cognition to automation

    Get PDF
    High-tech systems are ubiquitous and often safety and se- curity critical: reasoning about their correctness is paramount. Thus, precise modelling and formal reasoning are necessary in order to convey knowledge unambiguously and accurately. Whilst mathematical mod- elling adds great rigour, it is opaque to many stakeholders which leads to errors in data handling, delays in product release, for example. This is a major motivation for the development of diagrammatic approaches to formalisation and reasoning about models of knowledge. In this paper, we present an interactive theorem prover, called iCon, for a highly expressive diagrammatic logic that is capable of modelling OWL 2 ontologies and, thus, has practical relevance. Significantly, this work is the first to design diagrammatic inference rules using insights into what humans find accessible. Specifically, we conducted an experiment about relative cognitive benefits of primitive (small step) and derived (big step) inferences, and use the results to guide the implementation of inference rules in iCon

    Self-Assembly of Supramolecular Triblock Copolymer Complexes

    Get PDF
    Four different poly(tert-butoxystyrene)-b-polystyrene-b-poly(4-vinylpyridine) (PtBOS-b-PS-b-P4VP) linear triblock copolymers, with the P4VP weight fraction varying from 0.08 to 0.39, were synthesized via sequential anionic polymerization. The values of the unknown interaction parameters between styrene and tert-butoxystyrene and between tert-butoxystyrene and 4-vinylpyridine were determined from random copolymer blend miscibility studies and found to satisfy 0.031<χS,tBOS<0.034 and 0.39<χ4VP,tBOS<0.43, the latter being slightly larger than the known 0.30<χS,4VP≤0.35 value range. All triblock copolymers synthesized adopted a P4VP/PS core/shell cylindrical self-assembled morphology. From these four triblock copolymers supramolecular complexes were prepared by hydrogen bonding a stoichiometric amount of pentadecylphenol (PDP) to the P4VP blocks. Three of these complexes formed a triple lamellar ordered state with additional short length scale ordering inside the P4VP(PDP) layers. The self-assembled state of the supramolecular complex based on the triblock copolymer with the largest fraction of P4VP consisted of alternating layers of PtBOS and P4VP(PDP) layers with PS cylinders inside the latter layers. The difference in morphology between the triblock copolymers and the supramolecular complexes is due to two effects: (i) a change in effective composition and, (ii) a reduction in interfacial tension between the PS and P4VP containing domains. The small angle X-ray scattering patterns of the supramolecules systems are very temperature sensitive. A striking feature is the disappearance of the first order scattering peak of the triple lamellar state in certain temperature intervals, while the higher order peaks (including the third order) remain. This is argued to be due to the thermal sensitivity of the hydrogen bonding and thus directly related to the very nature of these systems.
    • …
    corecore