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Abstract. Diagrams in mechanised reasoning systems are typically en-
coded into symbolic representations that can be easily processed with
rule-based expert systems. This relies on human experts to define diagram-
to-symbol mapping and the set of rules to reason with the symbols. We
present a new method of using Deep artificial Neural Networks (DNN)
to learn continuous, vector-form representations of diagrams without
any human input, and entirely from datasets of diagrammatic reasoning
problems. Based on this DNN, we developed a novel reasoning system,
Euler-Net, to solve syllogisms with Euler diagrams. Euler-Net takes two
diagrams representing the premises in a syllogism as input, and outputs
either a categorical (subset, intersection or disjoint) or diagrammatic
conclusion (generating an Euler diagram representing the conclusion) to
the syllogism. Euler-Net can achieve 99.5% accuracy for generating syl-
logism conclusions, and learns meaningful representations. We propose
that our framework can be applied to other types of diagrams, especially
the ones we are less sure how to formalise symbolically.

Introduction

Diagrams have been shown to be effective tools for humans to represent and rea-
son about complex concepts [1]. Several researchers have developed automated
reasoning systems for diagrams. For example, Jamnik et al [2] developed DIA-
MOND for automating diagrammatic proofs of arithmetic theorems. Barwise et
al [3] used blocks-world to teach and reason in first order logic with Hyperproof.
Stapleton et al [4] developed Edith for automated Euler diagram theorem prov-
ing. Urbas et al [5] extended Edith to spider diagrams and developed Speedith.
In these systems, mechanising reasoning with diagrams usually relies on meth-
ods of encoding diagrams as symbolic representation that can be easily processed
with a rule-based program. Such methods rely on human experts to define the
framework of diagram-to-symbol mapping and the set of rules to reason with
the symbols. In this work, we developed a method using Deep artificial Neural
Networks (DNN) to learn a continuous and vector-form neural representations
of diagrams without any human input rules. With this method, diagrams can be
encoded into neural representations, and reasoned about with subsequent neural
networks or human-defined rules.

Recently, DNNs have achieved human comparable performance in several tasks
such as image recognition [6], natural language translation [7]. DNNs’ success in
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tasks that humans are good at can be partly attributed to their biologically in-
spired architecture. Deep convolutional neural networks, a type of DNN applied
for supervised image-based tasks, have both strong architectural and activity
pattern similarity to visual cortex in the human brain [8]. This biological sim-
ilarity motivates us to apply DNN to investigate diagrammatic reasoning. We
developed Euler-Net, a type of DNN that performs syllogism reasoning with Eu-
ler diagrams. The DNN takes as input a number of Euler diagrams (premises),
which show set relationships between sets contained in them. Euler-Net can gen-
erate a categorical conclusion (subset, intersection or disjoint) about the rela-
tionship between the sets with 99.5% accuracy. It can also learn using Generative
Adversarial Network (GAN) to generate Euler diagrams that represent the set
relationships without using any additional drawing tools. This enables Euler-
Net to perform full diagrammatic inference, and shows that the learnt neural
representations encodes essential information of the reasoning task.

Euler-Net is developed on, but not limited to, Euler diagram syllogism tasks.
It can be applied to types of diagrams that are difficult to formalise into logic
symbols, and can learn feature representations that capture essential information
in the diagrams and subsequently analyse it. In our future work, we will adapt
Euler-Net to a broader range of diagrams, and develop it into a useful tool for the
diagram research community for investigating different types of diagrammatic
representations.

In the rest of this paper we first give in Section 2 some background to neural nets
and Euler diagrams. In Section 3 we present our deep neural net architecture and
its use in Euler-Net to reason with Euler diagrams. Next, we evaluate our system
in Section 4, and discuss these results and some future directions in Section 5.
Finally we conclude in Section 6.

Background

Neural networks

Artificial Neural Network (ANN) is an information processing paradigm that
is inspired by biological nervous systems. A general ANN consists of layers of
artificial neurons connected in a graph, most often in an acyclic directed form. A
single artificial neuron has very limited computational capability. However, when
many of them are connected together to form an ANN, very complex functions
can be approximately represented. ANN can be optimised by back propagation
algorithm [9], a way to back propagate errors from higher layers to lower layers
in order to correct weights assigned to lower layer inputs.

Recently, a particular type of ANN, a convolutional neural network (CNN) has
made breakthroughs in various AI tasks such as image classification [6]. CNN
consists of convolutional layers that apply learnable filters on images to extract
features, and pooling layers that summarise local information. A typical CNN
consists of multiple stacks of convolutional and pooling layers. The layers learn
to extract progressively more complex image features (from edges and contours
to objects). A deep CNN can learn highly complex feature representations that
are similar to neural responses in the human visual cortex [8].
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Fig. 1: Euler diagrams representing 4 possible relationships between non-empty
sets A and B.

Euler diagrams

Euler diagrams [10] are a simple, yet effective diagrammatic representation for
reasoning about set relationships. We will use a colour-coded modification of the
Gergonne’s system of Euler diagrams [11] for its simplicity and visual clarity. In
this system, minimal regions are assumed to be non-empty (i.e., the Gergonne
system of Euler diagrams assumes existential import), and shading is not used.
We assign a distinct colour to each contour instead of alphabet labels to denote
classes. Colour coding facilitates the training of neural network by reducing the
need to associate Alphabet labels with circled regions. There can be four different
relationships between two sets A and B, which are: (1) A ⊃ B, (2) A ⊂ B,
(3) A ∩B 6= ∅ and (4) A ∩B = ∅.
While in theory the fifth relationship A = B is also possible, we do not consider it
in this work because colour-coded contours will completely overlap and thereby
diminish visual clarity – we leave to explore this in the future. Figure 1 illustrates
how these 4 different set relationships can be represented by 4 different categories
of colour-coded Euler diagrams (two sets denoted by Red and Green).

Euler diagrams are very effective in representing syllogisms. A syllogism consists
of two premises that entail a conclusion. Figure 2 illustrates how the colour-
coded Euler diagrams represent the syllogism “All Green are Red, all Blue are
Green, therefore all Blue are Red”. In our task, we do not enforce the fixed-size
contour constraint, which means that contours representing the same class can
have varying sizes in different diagrams. As this Euler diagram system does not
represent partial information, for certain premises there is not a single directly
implied conclusion diagram, but several diagrams that are self-consistent [12]
with the given premises. An example would be for premises “All B are A, some
C are B”, consistent conclusions include “some C are A” and “all C are A”. We
later show that neural networks can learn to reason with self-consistency and
generate all conclusions that are consistent with the premises.

Neural network architecture

Euler-Net for categorical output

We built a system, called Euler-Net, which is a neural network trained to solve
syllogisms represented with Euler diagrams. Euler-Net takes two Euler diagrams
representing the premises of the syllogism as input, and outputs a categorical
conclusion (subset, intersection or disjoint) for the syllogism. Figure 3 shows the
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Fig. 2: Euler diagrams representing the syllogism “All Green are Red, all Blue
are Green, therefore all Blue are Red”.

Fig. 3: Overview of the Euler-Net neural network architecture for Euler diagram
syllogism reasoning.

architecture of Euler-Net. The first input diagram shows a relationship between
a set Red and a set Green. The second diagram shows a relationship between
sets Green and Blue. There are 4 possible categories for a categorical conclusion
output from Euler-Net, as discussed in Section 2.2.

In the case of indeterminacy when no single logical conclusion can be drawn
(e.g., All Green are Red, Some Green are Blue), the neural network outputs
all conclusions that are consistent (not contradicting) with the premises. Neu-
ral networks are trained with pairs of premise diagrams and labels that encode
correct conclusions into a binary (0 or 1) vector of length 4, with 4 positions in
the vector representing each conclusion category as in Section 2.2. For example,
vector [0100] encodes Blue ⊂ Red. While developed on the classical syllogisms,
Euler-Net can be applied to diagram tasks with arbitrary number of contours
in the diagram and arbitrary number of diagrams in the task. We also applied
Euler-Net on tasks where there are 3 contours in each diagram. Namely, the
first diagram contains Red, Green and Blue contours, while the second diagram
contains Green, Blue and Yellow contours. The task is to infer consistent rela-
tionships between classes Red and Yellow. In Section 4 we show that for 3-contour
task, the reasoning accuracy decrease is negligible.

Euler-Net is composed of two modules. The first module is a convolutional net-
work that recognises the diagrams and encodes them into high-level neural fea-
ture representations. This network has a similar function to a visual cortex in the
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Fig. 4: Overview of diagram generation module for Euler-Net.

human brain [8], which transforms visual stimuli into neural code. The second
module is a reasoning network that performs inference on the neural presenta-
tions of diagrams. This reasoning network extracts useful information from the
neural representations in order to achieve accurate inference. The reasoning net-
work consists of fully-connected layers that densely process the neural represen-
tations, and outputs the probability for each categorical conclusion.Euler-Net
can be trained to minimise error rates in reasoning with standard Stochastic
Gradient Descent (SGD) and a back-propagation algorithm [9]. Formally, the
training objective is to minimise the loss function as in Equation 1:

L(D,T ) = −
∑

(d,t)∈(D,T )

∑
i

ti log f(d) + (1− ti)(1− logf(d)) (1)

where D are premise diagrams, T are labels, (d, t) is a training sample of
the problem set, ti is the ith element in the label vector, and f(d) represents
Euler-Net as a function of d.

Euler-Net for diagram generation

Instead of generating a categorical conclusion, Euler-Net can also generate dia-
grammatic conclusion of a syllogism, such as diagram 3 in Figure 2. This allows
Euler-Net to perform complete diagrammatic inference. Diagrams can be gen-
erated from the neural representations of the syllogism problem without any
human intervention or established drawing tools. This is accomplished by con-
catenating an image generator network to Euler-Net. Figure 4 illustrates the
architecture of Euler-Net for diagram generation. This generator network uses
latent neural code vector extracted from the last layer of Euler-Net to generate
Euler diagrams that are consistent with the given premises. The latent code vec-
tor encodes consistent conclusions for the reasoning task. The generator network
then transform this neural representation to an Euler diagram consistent with
the given premises.
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The generator network is trained with Generative Adversarial Network (GAN)
[13] training objective, which recently became popular for generating high defini-
tion and sharp images. GAN consists of a generator network and a discriminator
network that are jointly trained in a minimax game. The generator tries to gen-
erate images as real and accurate as possible, while the discriminator tries to
distinguish between the generated and the correct images. The GAN training
objective can be mathematically formulated as in Equation 2:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2)

where G is the generator, D is the discriminator, x is a correct data sample,
and z is the latent code vector. This can be viewed as a minimax game between
G, which tries to minimise the objective, and D which tries to maximise it.
During training, the parameters of the generator and the discriminator are up-
dated alternatively to converge towards a dynamic equilibrium. The generator
converges after 50000 iterations, and is able to generate an accurate and clear
Euler diagram conclusion consistent with the given premises.

Evaluation

Euler-Net is trained with syllogism problems generated from an Euler diagram
syllogism task generator. This generator firstly generates two random logical
relationships for the first two premises, and then generates two Euler diagrams
representing the two logical relationships with random size and position, as long
as the logical relationships are not violated. Subsequently, the task generator
generates consistent conclusions from a manually constructed truth table that
maps any two premises to a set of consistent conclusions. For each consistent
conclusion, corresponding Euler diagrams are also generated with random size
and position. In total, we generated 96000 Euler syllogism reasoning problems for
neural network training. For the 3-contour dataset, the diagrams and conclusions
are generated in the same fashion. The truth table is larger as each premise now
contains relationships between 3 classes, giving 43 possible cases.

During training, we divide the dataset into training set, validation set and test
set with a split ratio of 8 :1 :1. We trained Euler-Net with the training dataset,
tuned its performance with reported scores on the validation dataset, and fi-
nally, we evaluated the final performance on the test dataset. We report here
the percentage accuracy which is defined as the number of syllogism problems
correctly solved over the total number of problems. Euler-Net is able to achieve
a nearly perfect accuracy of 99.5% on the 2-contour Euler syllogism tasks, and
99.4% on 3-contour task. In order to understand the performance results further,
we separate test results for conclusive syllogism groups (a single logical conclu-
sion) and inconclusive groups (multiple consistent conclusions). We found that
Euler-Net achieves 100% accuracy for conclusive groups, which could indicate
that conclusive syllogisms are relatively simpler than the inconclusive ones.

Euler-Net with added diagram generator can create high quality Euler diagrams
from neural representations mostly without image artefacts. Figure 5 shows ex-
amples of Euler conclusion diagrams generated by Euler-Net for 2-contour and
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(a) p1 (b) p2 (c) c (d) p1 (e) p2 (f) c

Fig. 5: Two examples of the Euler-Net generated diagrams. p1 and p2 are
premises and c are Euler-Net generated conclusion diagrams.

3-contour task. This shows that Euler-Net learns neural representations that
encode essential information of the syllogism reasoning problem. Such neural
representations can be interpreted by a diagram generator network to create a
diagrammatic conclusion.

Discussion

While we showed that DNN can perform diagrammatic reasoning and learn use-
ful representations on the relatively simple Gergonne’s system of Euler diagram
syllogism solving, DNN is not limited to a particular type of diagram. DNN
provides a universal method for encoding all types of diagrams into neural codes
that can be subsequently analysed. While simple diagrams like Euler diagrams
can be conveniently formalised symbolically into sets of zones, labels and shad-
ings, there are many types of diagrams that are more difficult to formalise. DNN
can be applied to learn representations of such diagrams, and thus enable us to
analyse aspects of those representations, such as for example, the difficulty level
of the question, the amount of redundant information in the diagram, and how
the core logic can be efficiently encoded with DNN in the sequence of diagrams.
We will apply DNN to such more complex diagrams in our future work.

Euler-Net’s learning capacity can be increased for more complex diagrams than
Euler diagrams with 3 contours by increasing architecture complexity, and in-
cluding recent techniques such as residual network connections. While in theory
for n-set Euler diagram, quadratic amounts of nodes are required in the network,
most of the nodes can be designed as a reusable module for simple operations,
similarly to how we use the CNN weights for input diagrams. We can also intro-
duce a recent technique called “neural network attention”, which allows a neural
network to reuse weights for learning simpler features such as 2-set relations –
this would greatly improve scalability.

While Euler-Net achieves 99.5% accuracy, it is still not on-par with logical sym-
bolic reasoner which is 100% accurate. However, conceptually, logical symbolic
reasoners only reason with the symbols that represent diagrams, while Euler-
Net reasons directly with the raw diagram input. The strength of DNN is its
ability to capture feature representations for any type of diagram and its robust-
ness to noise. In our future work we will extend Euler-Net to diagrams that are
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drawn with noise or even missing parts, and where a symbolic reasoner may fail
because of difficulty of transforming noisy diagrams into symbols. We will also
develop Euler-Net on a full set of modern Euler-typed diagrams with shading
and non-existential import, including concept diagrams and spider diagrams.
We will develop Euler-Net as a neural-network-counterpart of modern diagram
theorem provers like Speedith [5].

Conclusion

We developed Euler-Net, a deep neural network that can learn to perform dia-
grammatic reasoning about Euler diagram syllogism tasks. We illustrated that
neural representations learnt by Euler-Net encode essential information about
the input diagrams and the reasoning task. Euler-Net, while developed on Euler
diagrams, is not constrained to a specific category of diagrams. Euler-Net can be
readily adapted to other more complex diagrams where information extraction
and formalisation is more difficult. We believe that deep neural networks can be
developed into a useful tool for the diagram research community.
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