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Abstract. High-tech systems are ubiquitous and often safety and se-
curity critical: reasoning about their correctness is paramount. Thus,
precise modelling and formal reasoning are necessary in order to convey
knowledge unambiguously and accurately. Whilst mathematical mod-
elling adds great rigour, it is opaque to many stakeholders which leads
to errors in data handling, delays in product release, for example. This is
a major motivation for the development of diagrammatic approaches to
formalisation and reasoning about models of knowledge. In this paper, we
present an interactive theorem prover, called iCon, for a highly expressive
diagrammatic logic that is capable of modelling OWL 2 ontologies and,
thus, has practical relevance. Significantly, this work is the first to design
diagrammatic inference rules using insights into what humans find acces-
sible. Specifically, we conducted an experiment about relative cognitive
benefits of primitive (small step) and derived (big step) inferences, and
use the results to guide the implementation of inference rules in iCon.

1 Introduction

The long-held assumption that using diagrams makes modelling and reasoning
accessible, goes back to ancient times (e.g., Euclid’s Elements). Despite this, the
development of automated diagrammatic reasoning tools (e.g., Hyperproof [2],
Diamond [8] and Speedith [22]) has been rare in comparison to sentential theorem
provers. One of the main areas yet to be explored in diagrammatic reasoning
is the level of abstraction employed when constructing proofs, which relies on
inference rule style. The ‘right’ level of abstraction can facilitate interaction
between users and the system as well as increase the readability of the generated
proofs [11, 3]. But what is the ‘right’ level of abstraction for a human user? In
this paper we introduce a diagrammatic reasoning system, iCon, for concept
diagrams [19], which is designed so that the level of abstraction for diagrammatic
inference rules is based on empirical results of what humans find accessible.

In sentential theorem proving, tactics, tacticals, proof strategies, proof meth-
ods and ‘derived rules’ are all attempts to achieve higher level of abstraction in
logical reasoning [5]: they enable applying a sequence of inference rules all in one
go. Tools such as Isabelle [13] exploit tactical reasoning to provide a high level of
abstraction and some level of automation. But the use of tactics in diagrammatic



logics is largely unexplored. One attempt at controlling the level of abstraction
in diagrammatic theorem proving is seen in Speedith [22] (a theorem prover for
spider diagrams [4]) which uses tactics [11]. The choice of tactics in [11] is guided
by metrics, which are informed by empirical studies [10] related to readability
such as proof length and diagram clutter.

We focus on concept diagrams, which are based on spider diagrams but are
more expressive. They were developed as a formal visualisation method for defin-
ing and reasoning about ontologies. Empirical evidence suggests [6] that concept
diagrams are more accessible than the standard ontology language1 OWL 2 and
description logic [1]. In addition, cognitive theories support their effectiveness
over common node-link ontology representation approaches [18].

Our goal is to develop a diagrammatic theorem prover for concept diagrams
whose inference rules are designed to be accessible to users. We conducted an
experiment to assess what level of abstraction users find accessible. We studied
10 inference tasks, based on practically relevant ontology inference problems
formulated in [12]. The tasks were presented in two variations: using primitive
inference steps and using derived inference steps, where the latter are coarser and
more abstract than the former. User performance was measured in terms of their
accuracy in identifying the validity of inference tasks. The level of abstraction
(i.e., primitive vs. derived) that resulted in significantly higher accuracy rate was
interpreted as the ‘right’ level of abstraction. We found that an appropriate level
of abstraction was rule dependent. These results serve as the basis of design and
implementation of inference rules in our interactive theorem prover iCon.

One of the unique selling points of iCon, and the main contribution of this
paper, is the fact that the design of inference rules is guided by empirical studies
of what inference rules people performed more accurately with, rather than being
motivated by meta-level considerations such as completeness, which is often the
case in formal systems. Although tactics incorporated in Speedith [22] are based
on metrics that are found empirically, in this paper we have taken a step further
by empirically testing the inferences themselves.

We give an overview of concept diagrams in Section 2, and introduce iCon in
Section 3. In Section 4 we report on the empirical study that compares primitive
vs. derived inference tasks. How the results of the empirical study inform the design
of diagrammatic inference rules in iCon is discussed in Section 5. We compare our
contributions to related work in Section 6 and finally, conclude in Section 7.

2 Concept diagrams: background and overview
Concept diagrams were introduced for the purpose of visualising and specifying
ontologies, and they are expressive enough to handle binary predicates [19]. They
consist of syntactic objects such as rectangles, closed curves, and shading (as seen
in Euler and Venn diagrams) as well as other additional objects such as dots,
solid arrows and dashed arrows.

Rectangles are used to represent all individuals in the world. By combining
curves inside a rectangle, we can represent several cases. For example, in Fig-

1 https://www.w3.org/TR/owl2-direct-semantics/
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Fig. 1. Concept diagrams: (a) toys are either ghosts, dogs, or both; (b) there is nothing
which is not a ghost or a dog; (c) all ghosts see only dogs; (d) all individuals in the
world see only dogs; (e) all ghosts see at least one dog.

ure 1(a), the circle toy is inside two circles, ghost and dog. Thus, toys are either
ghosts, dogs, or both. Note that concept diagrams do not adopt the existential
import assumption: the presence of a minimal region says nothing about whether
there are some individuals in it (for details, see [15]). Shading is used to represent
that there is nothing (i.e., to assert set emptiness). In Figure 1(b), the region
outside of ghost and dog is shaded. This means that there is nothing which is not
a ghost or a dog. That is, everything is a ghost or a dog. The syntax described
so far should be familiar in that concept diagrams with only rectangles, closed
curves and shading are Euler diagrams.

Concept diagrams add syntactic objects to Euler diagrams, including arrows
which are used to express verb relations. There are two kinds of arrows: solid and
dashed ones. Solid arrows mean that the source is related to only the target. For
example, in Figure 1(c), the solid arrow labelled sees connects from the circle
ghost to the unlabelled circle inside dog. This means that all ghosts see only
dogs. Figure 1(d) is another example where the solid arrow sees connects from
the rectangle to the unlabelled circle inside the circle dog. This means that all
individuals in the world see only dogs. On the other hand, dashed arrows mean
that the source is related to at least the target. That is, the source may be
also related to other targets. For example, in Figure 1(e), the dashed arrow sees
connects the circle ghost to the unlabelled circle inside the circle dog. Together
with the arrow annotation ≥ 1, this means that all ghosts see at least one dog.

Here is an informal overview of the syntax and semantics of concept diagrams;
for formalisation, see [20]. A concept diagram is a collection of boundary rectan-
gles including the syntax contained by them, and all arrows connecting them.
Each boundary rectangle properly contains some (possibly empty) set of closed
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curves, some of which (possibly none or all) are labelled. Labelled closed curves
represent specific sets (e.g., the set of dogs in Figure 1(d)) or an anonymous set
(e.g., some unnamed subset of dogs in Figure 1(d)). The closed curves within a
rectangle partition the plane into zones: a zone is a region inside some (possibly
no) curves and outside the rest of the curves. For example, in Figure 1(d), the
concept diagram comprises two boundary rectangles, one of which contains no
curves, the other contains two curves; these two curves give rise to three zones.
In general, a set of zones inside a boundary rectangle is called a region.

Zones can be shaded and they may also contain dots. In addition, dots can
be joined together by straight lines to form spiders. Each spider represents an
individual. If the spider is labelled, it represents a specific individual. An unla-
belled spider, just like an unlabelled curve, represents an anonymous individual.
Distinct spiders represent distinct individuals, unless joined by = to assert their

equality, or by
?
== to indicate that it is unknown whether they represent the same

individual. Also, the individual represented by a spider is an element of the sets
represented by the region in which the spider is placed.

The last major component of concept diagrams is arrows, which are of two
types, dashed and solid. Arrows are sourced and targeted on boundary rectan-
gles, closed curves, or spiders. Each arrow has a label, p, which represents a
binary relation. The source and target of any given arrow need not be inside
the same boundary rectangle. In addition, the label can be annotated with −

to indicate the inverse of the relation, or with cardinality constraints: ≤ n, ≥ n
or = n, where n is a natural number. Semantically, a solid arrow with source s,
label p (resp. p−) and target t expresses (blurring the distinction between syntax
and semantics) that if the domain of p (resp. p−) is restricted to the source s
then the image is t. If, however, the arrow is instead dashed, then it expresses
that if the domain of p (resp. p−) is restricted to the source s then the image is
a superset of t. In Figure 1(c), the solid arrow expresses that, under the relation
sees with domain restricted to ghost, the image is an anonymous subset of dog.
Intuitively, this means that ghosts see only dogs. In Figure 1(e), the dashed ar-
row expresses that, under the relation sees with domain restricted to ghosts, the
image includes some anonymous subset of dog. Intuitively, this does not tell us
anything. It is only through the use of the additional annotation, ≥ 1, that this
arrow provides information: each ghost sees at least one dog.

Each rectangle, and its contents, in a concept diagram is called a class and
object property diagram. This is because its curves represent classes (which are
sets of individuals) and its arrows give information about properties (which are
binary relations). Thus, a concept diagram is a set of class and object property
diagrams, along with any connecting arrows.

3 iCon: A concept diagrams interactive theorem prover

We built an interactive theorem prover2 for concept diagrams, iCon, that can
be used to reason, for example, about ontologies. iCon consists of the reason-

2 Available at: https://github.com/ZohrehShams/iCon.
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ing engine and the graphical user interface (GUI). We based iCon’s design on
Speedith [22], a theorem prover for spider diagrams [4], since concept diagrams
are based on spider diagrams. In Speedith, the design of inference rules was
based on obtaining soundness and completeness, whereas the design of inference
rules in iCon is guided by an experiment (Section 4) into what abstraction level
of deduction steps do people perform more accurately with. This approach to
designing iCon improves the readability of the resulting proofs.

3.1 Reasoning engine

The iCon reasoning engine (i) contains a collection of inference rules; (ii) handles
the application of inference rules to diagrams expressed in an abstract syntax;
and (iii) manages proofs. iCon only applies valid inference rules, and, since these
are sound, proofs generated in iCon are guaranteed to be correct.

Proofs A proof in iCon starts with the initial proof state, denoted as ∆0 which
is of form (d1∧· · ·∧dm)⇒ dn, where di are concept diagrams. This means that if
d1, · · · , dm (referred to as goals, and denoted as set G) hold, then dn holds. Proofs
are linear and constructed by applying sequences of inference rules on goals.
Starting from ∆0, the proof continues by applying inference rules to a goal d ∈ G.
The result of applying an inference rule (with the exception of the inference rule
Identity that will be explained in the next section) is a diagram d′, such that d
semantically entails d′ (d � d′). In a proof, P = ∆0, · · · , ∆k s.t. 0 ≤ i < k, there
has to be a goal d in the set of goals in proof state ∆i and d′ in the set of goals
in proof state ∆i+1 such that d′ is the result of applying one of the inference
rules to d. Proof P is finished if the final proof state ∆k is of the form dn ⇒ dn,
which means dn implies dn, and is trivially true.

Figure 2 shows a proof where proof states are separated by red bars. The
inference rules are applied on the proof states above the lines and result in the
proof states below the lines (stated as “Applied inference”). In the final proof
state, as expected, the diagram on the left hand side is identical to the one on
the right hand side. Finally, the proof is finished by applying Identity. The rest of
inference rules used in this figure will be formally defined in Section 5 (page 11).

Inference rule design Inference rules are divided into logical and diagram-
matic rules, where the former correspond to entailments and equivalences of
propositional logic, while the latter rewrite the diagrams representing the goals.
The fragment of concept diagrams used in this paper only uses ∧ operator; there-
fore, the logical rules applicable are: Conjunction Elimination ((d1 ∧ d2) ⇒ d1
and (d1 ∧ d2)⇒ d2), Conjunction Idempotency ((d ∧ d)⇔ d), and Identity (ap-
plied to the final proof state to express that d ⇒ d is trivially true, and thus
concludes the proof). The diagrammatic inference rules are motivated by the do-
main in which the reasoner is intended to be used: we chose ontology reasoning
and debugging. We focus on a study [12] that provides statistical evidence for
the practical significance, commonality and coverage of inference rules that it
introduces for ontology entailment reasoning.3 There are 51 inferences (referred

3 Any ontology reasoning task can be reduced to entailment reasoning.
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Fig. 2. An example of a proof.

to as ontology deduction patterns) identified in [12] and are ranked based on
their accessibility measured through user studies. Each inference rule consists of
up to four premises and a single conclusion and can often be broken down to
more fine grained inference rules by introducing intermediate steps.

When designing the chosen diagrammatic inference rules, there are important
choices with regards to the level of abstraction for these rules. To inform these
choices, we conducted an empirical study (see Section 4) that compares two
variations of diagrammatic inference rules, with different levels of abstraction
and granularity in a number of deduction patterns. One variation takes the
premises and conclusion of the deduction patterns in [12], and introduces an
intermediate step; we call this variation primitive. The other variation is identical
to the inference rules in [12], consisting of premises and conclusion only without
an intermediate step; we call this variation derived – it is more abstract than
the primitive version. The findings of the experiment comparing primitive and
derived diagrammatic inference steps guides the process of implementing them,
and it will be further discussed in Section 5.
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3.2 Graphical user interface

iCon provides a graphical user interface that allows visualising diagrams and ap-
plying inference rules on them interactively. Visualisation of diagrams is based
on iCircles [21] – a Java library for drawing Euler diagrams using circles. iCircles
was extended in Speedith [22] to represent spiders (existential elements). Here
we extended it further to visualise unlabelled and labelled spiders and curves,
and also to visualise solid and dashed labelled arrows with possible cardinali-
ties. Users can select via a graphical point-and-click mechanism any part of the
diagram to apply a diagrammatic inference rule on. This changes the diagram’s
abstract representation, and the new abstract representation is visualised using
the visualiser. For screenshot of iCon, see Figure 2.

4 Empirical experiment for the design of inference rules

To determine the right level of abstraction for diagrammatic rules, we compared
participants’ performance in inference tasks with concept diagrams in examples
proved using primitive rules with those proved by derived inference rules.

4.1 Method

Fifty-one undergraduate students from seven classes on elementary computer
science at the University of Brighton were recruited. The mean age was 24.12
(SD = 5.89) with a range of 19–48 years. All participants gave informed consent
and were paid for their participation. The experiment method was approved by
the CEM School Research Ethics Panel of University of Brighton. In order to
provide an inference system that is accessible to a broad range of people, not just
ontology experts, none of the participants had any prior knowledge of ontology
engineering. One participant withdrew, so their data was excluded. Participants
were randomly divided into two groups: the primitive group (N = 25) and the
derived group (N = 25).

The participants in the primitive group were given tasks with intermediate
step diagrams as well as premise and conclusion diagrams (i.e., primitive rules
are applied in the proof; see Figure 3 on page 9). The participants in the de-
rived group were given tasks with only premise and conclusion diagrams without
intermediate steps (i.e., derived rules are applied). Participants were asked to
determine if the diagram transformations were valid or not. We presented 20
items in total: 10 consisted only of valid transformations of diagrams (#01–10)
and 10 items included invalid transformations of diagrams (#11–20). The valid
10 items were selected from the medium difficulty amongst the 51 patterns given
in [12]. This is because in any study, tasks that are too easy (leading to ceiling
effect) or too hard (floor effect) reveal no insights. Minimal changes were made to
the valid items (e.g., a set name, relation, cardinality) to create invalid ones. The
tasks were further divided into the so-called Euler-Venn diagram level (#01–05;
#11–15; they include only labelled curves and shading), and the concept dia-
gram level (#06–10; #16–20; they include arrows and other syntax); the tasks
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Table 1. List of inference tasks (#01–10 are valid; #11–20 are invalid. #01–05/#11–
15 are Euler-Venn diagram level; #06–10/#16–20 are concept diagram level) and their
accuracy rates (* refers to a significant difference between the two groups at p < 0.05;
+ refers to p < 0.10).

Number Premises ⇒ Conclusion Primitive% Derived%

01. (A v B) ∧ (Dis(A,B))⇒ (A v ⊥) 95.0 80.1
02. (Dis(A,B)) ∧ (C v A) ∧ (D v B)⇒ (Dis(C,D)) 80.0 85.7
03. (A v (B v C)) ∧ (B v C)⇒ (A v C) 60.0 + 85.7
04. (> v B) ∧ (Dis(A,B))⇒ (A v ⊥) 60.0 66.7
05. (A v B) ∧ (A v ¬ B)⇒ (A v ⊥) 70.0 76.2

06. (A v ∃R.B) ∧ (Rang(R,C))⇒ (C v ∃R.(B u C)) 75.0 80.1
07. (A v ∃R.(B u C)) ∧ (Dis(B,C))⇒ (A v ⊥) 70.0 85.7
08. (A v≥ 3R.B) ∧ (A v≤ 1R.B)⇒ (A v ⊥) 50.0 52.4
09. (A v ∃R.B) ∧ (B v ⊥)⇒ (A v ⊥) 65.0 57.1
10. (A v≥ 4R.B) ∧ (Fun(R))⇒ (A v ⊥) 20.0 + 47.6

11. (B v A) ∧ (Dis(A,B))⇒ (A v ⊥) 75.0 71.4
12. (Dis(A,B)) ∧ (C v A) ∧ (B v D)⇒ (Dis(C,D)) 70.0 52.4
13. (A v (B v C)) ∧ (B v C)⇒ (A v B) 55.0 47.6
14. (> v B) ∧ (A v B)⇒ (A v ⊥) 60.0 66.7
15. (A v B) ∧ (¬ B v A)⇒ (A v ⊥) 50.0 * 85.7

16. (A v ∃R.B) ∧ (Rang(R,C))⇒ (Rang(R,C u ¬B)) 40.0 38.1
17. (A v ∃R.(B t C)) ∧ (Dis(B,C))⇒ (A v ⊥) 85.0 85.7
18. (A v≥ 1R.B) ∧ (A v≤ 3R.B)⇒ (A v ⊥) 70.0 66.7
19. (A v ∃R.B) ∧ (A v ⊥)⇒ (B v ⊥) 60.0 66.7
20. (A v≥ 1R.B) ∧ (Fun(R))⇒ (A v ⊥) 90.0 81.0

are summarised using stylised description logic syntax in Table 1.4 Tasks #01
and #06 are semantically equivalent and can be expressed by the same diagram-
matic representation. Thus, #01 was expressed by Venn diagrams and #06 was
expressed by Euler diagrams. The tasks were presented in one of three random
orders as a paper-and-pencil test. There was no time limit for completing the
tasks, although the approximate time (30 minutes) for taking the experiment
was instructed.

All participants were gathered in a room. First, the participants were pro-
vided with three pages of instructions on the basic meaning of concept diagrams,
but not on particular rules to solve inference tasks. Second, a pretest was con-
ducted to check whether they understood the instructions correctly; they were
asked to choose, from a list of three possibilities, the sentence corresponding to
the meaning of a given diagram (for the importance of pretest settings, see [15]).
Third, the participants were provided with one page of instruction on the mean-
ing of a valid transformation (entailment), with two examples of diagrams: one

4 For unfamiliar readers, informally the DL syntax has the following interpretation:
A v B: A is a subset of B; ⊥: the empty set; ∃R.A: the set of things related
to something in set A under binary relation R; Rang(R.A): the range of R is A;
Fun(R): R is functional; ≥ nR.A: the set of things related to at least n things in A
under R; ≤ nR.A: the set of things related to at most n things in A under R.
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Fig. 3. A task (#10) in the primitive group. In the derived group, the intermediate
diagram was removed.

was valid and one was not valid.5 After the instruction phase, the participants
were asked to solve the main reasoning tasks of the experiment.

4.2 Results

The data for participants who made mistakes in more than two items (out of
five) in the pretest was removed. In our analysis, 5 out of 25 in the primitive
group, and 4 out of 25 participants in the derived group were removed.

The accuracy data for each task was analysed using a χ2 test. In task #15,
accuracy rates in the derived group were significantly higher than those in the
primitive group (47.1% vs. 88.2%, p = 0.014). In task #03, accuracy rates in
the derived group were significantly higher than those in the primitive group,
at a reduced threshold of p < 0.10 (64.7% vs. 88.2%, p = 0.063). In task #10,
accuracy rates in the derived group were significantly higher than those in the
primitive group, at a reduced threshold of p < 0.10 (23.5% vs. 47.1%, p = 0.062).
In other tasks, there were no significant differences between both groups.

In the comparison between #01 (expressed with Venn diagrams) and #05
(expressed with Euler diagrams), a significant difference was found in the prim-
itive group (95.0% vs. 70.0%, p = 0.037), but not in the derived group (80.1%
vs. 76.2%, p = 0.432). Overall, the comparison of accuracy data between the
primitive group and the derived group revealed no significant difference.6

5 See https://sites.google.com/site/myardproject/exp/MateInst2.zip?aredirects=0&d=1 for full
instructions.

6 65.0% vs. 69.1% (Mann-Whitney U = 179, p = 0.416) for overall (#01--20), 64.5%
vs. 71.9% (U = 179, p = 0.159) for valid transformations (#01--10), 65.5% vs. 66.2%
(U = 208, p = 0.958) for invalid ones (#11--20), 73.0% vs. 79.1% (U = 166, p = 0.232)
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Fig. 4. Task #03 (left) and task #15 (right) in the primitive group. In the derived
group, the intermediate diagrams were removed.

4.3 Discussion

In task #10, shown in Figure 3 (described as (A v≥ 4R.B)∧ (Fun(R))⇒ (A v
⊥)), 80% of participants incorrectly judged the validity of diagram transforma-
tion using primitive rules. In comparison to the (random) chance level of 50%,
there was a significant difference in the primitive group (p = 0.047), but not in
the derived group (p = 0.877). In the diagram transformation using primitive
rules, the solid arrow from the rectangle is explicitly rewritten into the dashed
arrow from the curve inside the rectangle. On the other hand, there is no ex-
plicit rewriting of solid and dashed arrows in the diagram transformation using
derived rules. Since this difference is found in task #10, it is a candidate to ex-
plain the result of task #10 where better accuracy was achieved with the derived
rule. Therefore, a resulting heuristic suggests that we should not design diagram
transformations where solid arrows are replaced by dashed arrows.

On the other hand, what causes the significant differences in tasks #03 and
#15 between the primitive and the derived groups? In the diagram transforma-
tion in task #03, as shown in Figure 4 (left), it is important that the curves
crossing between lizardfolk and kobold in the first premise diagram mean that
the semantic relationship between them is indeterminate (see the existence-free
assumption for minimal regions, mentioned in Section 2). Therefore, the unifi-
cation between the premise diagrams results in the diagram where (i) lizardfolk
is inside kobold, (ii) merfolk is inside kobold, (iii) the relation between lizardfolk

for valid Euler ones (#01--05), 56.0% vs. 64.8% (U = 166.5, p = 0.242) for valid concept
ones (#06--10), 52.0% vs. 64.8% (U = 199, p = 0.769) for invalid Euler ones (#11--15),
and 69.0% vs. 67.6% (U = 194.5, p = 0.673) for invalid concept ones (#15--20).
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Fig. 5. Task #01 (left) and task #05 (right) in the primitive group. In the derived
group, the intermediate diagrams were removed.

and merfolk is unknown. Here, understanding crossing curves plays an essential
role in both deducing (i–iii) using a primitive rule and deducing (ii) using a de-
rived rule. Thus, the meaning of crossing curves cannot explain the performance
difference between both groups. In the case of task #15, as shown in Figure 4
(right), shading plays an important role in solving the task. However, the same
can be said for tasks #01, 04, 11, and 14, where significant differences in ac-
curacy performances were not found. Thus, it is not clear why the difference
between both groups was found only in task #15.

As stated before, tasks #01 and #05, which are semantically equivalent, were
expressed by Venn and Euler diagrams, respectively, as shown in Figure 5. The
result that the accuracy rate for #01 was higher than for #05 in the primitive
group suggests that Venn diagrams are more suitable than Euler for reasoning
about the emptiness of a set.7 In #05 (using Euler diagrams), the derivation
of the shaded curve labelled darkmantle, meaning darkmantle v ⊥, requires not
only spatial operation on diagrammatic objects, but also meta-level information
concerning semantic values (cf. the discussion in [16]). Whether for primitive
rules or derived rules, reasoning with Euler diagrams in this case can require
more cognitive effort than with Venn diagrams. Note that the effectiveness of
Venn over Euler diagrams is distinct from previous empirical findings [15].

5 Inference rules: design and implementation guidelines

We chose ontology reasoning and debugging for the first application domain
of iCon. In order to develop a theorem prover with practical relevance in this
domain, we focused on the 51 inferences found in [12]. However, there are a lot

7 Note that in ontology engineering, sets that are necessarily empty are called incoherent.
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of choices when designing the diagrammatic version of these inferences in iCon.
For example, the inference patterns are large and can often be broken down into
smaller steps, but what is the right level of granularity for the diagrammatic
inference rules? To ensure accessibility, this granularity level was informed by
our experiment where we translate the results into design and implementation
guidelines. Note that in the user study we tested the accessibility of 10 inferences
out of 51 from [12], but the design guidelines are general and can be used in the
implementation of any concept diagram inference rules.

Overall, no significant difference was observed between primitive and derived
rules, which suggests that the level of abstraction in the implementation is a
choice that the users ought to have and use as they see appropriate. Thus, the
first guideline we extract from the experiment is to implement both primitive
and derived versions of the inference rules.

The second guideline is related to the heuristic (Section 4.3, first paragraph)
that suggests that inference rules should not transform solid arrows into dashed
arrows. In the user study, tasks #6-10 involve arrows, with only task #10 trans-
forming arrows in its primitive version (Figure 3). Thus, we adopted the primitive
version of task #10, such that in the intermediate step diagram, the arrow with
cardinality ≤ 1 stays solid (right hand premise in Figure 3). For the remaining 41
inferences, we employ this heuristic and ensure that their diagrammatic versions
retain the arrow type.

The third guideline is based on the heuristic (Section 4.3, last paragraph)
that Venn seems to be a more effective representation than Euler when proving
incoherence of a set. More than 20% of 51 inferences from [12] prove incoherence,
and thus should employ this heuristic. Concretely, in our study, tasks #1,#4, #5,
and #7-10 deduce that a set is incoherent. Out of these, tasks #1,#4, #5, and
#7 can be alternatively represented in Euler or Venn form. In the experiment,
apart from task #5, which used Euler form (see Figure 5 (right)), the rest of
them were presented in Venn form. We revised task #5 accordingly, such that
it is presented in Venn form.

We now exemplify how these guidelines are put into practice in iCon. We
focus on the design and implementation of inference rules for task #5 in Figure 5
(right). Following the first design guideline, inference rules for both, primitive
and derived version of this task are implemented. In fact, the proof in Figure 2
(page 6) shows the implementation of the primitive version, while Figure 6 shows
the implemented derived version, where A is darkmantle and B is gorgon. The
second design guideline does not apply here, as there are no arrows. As seen
in Figures 2 and 6, following the third guideline presents the premises in Venn
instead of the Euler form that was originally used in our study. We now formally
define of the diagrammatic inference rules used in Figures 2 and 6. These rules
can be proved sound as in [17]. In addition to diagrammatic rules, the two logical
rules used are Conjunction Elimination and Identity (see Section 3.1).

The first diagrammatic rule we define copies shading from one region to an-
other. It relies on syntactically identifying when two regions represent the same
set. This has been extensively studied for Euler diagrams [7] and spider dia-
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Fig. 6. Proof of task # 5 using derived rule.

grams [22]. Thus, the syntactic identification of regions that represent the same
sets can be identified using the underlying Euler diagram (i.e., the boundary
rectangle containing only the labelled curves). Given a set of labelled curves, C ,
a fixed zonal region is the set of zones that are inside all of the curves in C and
possibly other curves; note the name ‘fixed’ since such regions represent partic-
ular, that is, ‘fixed’ sets and are not anonymous. Given a region, r, in a concept
diagram, d, we say that r is fixed if it is formed from a union of fixed zonal
regions. Fixed regions are said to be corresponding if, informally, they represent
the same set (the details of how this can be identified syntactically can be found
in [22]). We can now define the Copy Shading inference rule.

Definition 1 (Copy Shading). Let d1 and d2 be two concept diagrams con-
taining corresponding fixed regions r1 and r2, respectively, where:
1. r1 comprises only shaded zones and r2 has at least one non-shaded zone,
2. any spider with a dot in r1 (resp. r2) is completely contained by zones in r1

(resp. r2), and
3. the spiders in r1 match the spiders in r2.

Let d′2 be a copy of d2 except that r2 is entirely shaded. From d1 ∧ d2 we can
infer d1 ∧ d′2 and vice versa.

The Next rule needed for task #5 deletes a curve from a concept diagram.

Definition 2 (Erase Curve). Let c be a curve in a concept diagram d. Then
c can be removed from d, resulting in a new diagram, d′, with modified shaded
zones, spider habitats and arrows. In particular, if upon erasure of c, a shaded
zone merges with a non-shaded zone then the shading is removed, otherwise the
shading is preserved. Also, if a spider s has a foot in two zones that collapse
into one, then the spider will have a foot in the collapsed zone in d′. In addition,
arrows that have c as target or source are deleted when forming d′. From d we
can infer d′.
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Unlike the Copy Shading rule, which preserves semantics and is an equivalence,
Erase Curve weakens information and can be applied only in one direction.

Our next rule, Incoherence is used in the derived version of task #5. It allows
deducing that a curve, say c, is entirely shaded, by copying shading from a
conjunct diagram in which the corresponding non-shaded region of c are shaded.

Definition 3 (Incoherence). Let d1 and d2 be two concept diagrams contain-
ing curves c1 and c2, respectively, such that: c1 and c2 have the same label as each
other; c1 and c2 do not contain any spiders; and the non-shaded zones inside c1
in d1 form a fixed region that corresponds to some entirely shaded, fixed region
contained by c2 in d2. Let d3 be a concept diagram comprising a single boundary
rectangle containing a curve, c3, with the same label as c1 and c2 whose interior
is entirely shaded. From d1 ∧ d2 we can infer d3.

Currently, iCon implements 7 out of 10 inferences from [12] that were used in
the user study, plus additional rules that enable the user to vary the granularity
of the proof. To provide the same coverage as in [12], we are currently building
both primitive and derived variations for the remaining inferences in [12].

6 Related work and evaluation

Like iCon, DIAMOND [8] and Cinderella [9] are diagrammatic theorem provers,
however they operate in different domains of inductive theorems of natural num-
bers and geometry, respectively. In contrast, iCon deals with theorems about sets.
Unlike DIAMOND and iCon, proof steps in Cinderella may not be sound and
have to be verified externally by an automatic symbolic theorem prover.

iCon’s concept diagrams are a more expressive extension of Speedith’s spider
diagrams. Similarly to Speedith, the inference rules in iCon are purely logical or
diagrammatic. However, in Speedith the choice of inference rules is motivated by
the completeness property. In contrast, in iCon the focus is on the commonality
of the inference rules in the ontology domain. In addition, the design and im-
plementation of inference rules in iCon is informed by empirical studies of what
people find intuitive, and in particular, what level of granularity of rules enables
human users to reason most accurately. This is in line with one of the most
challenging areas of theorem proving, which is reducing the gap between user’s
model of the proof and the actual proof constructed by mechanised theorem
provers [3]. The proof steps in the user’s model are often coarser and have intu-
itive semantics, whereas the prover’s steps tend to be much more fine grained.
Our user study presented inference rules at different levels of granularity. The
derived ones, which are coarser than the primitive ones, can be seen as tac-
tics, as is common in sentential theorem proving. However, the role of tactics in
sentential theorem proving is typically to provide some level of automation, and
rarely to reduce the gap between user’s reasoning and that of a prover. Our work
addresses both, automation as well as human approach to constructing proofs.
For instance, in Figure 6 the tactic Incoherence reduces the length of proof in
comparison with Figure 2, while it still remains accessible by allowing the user
to choose a curve and establish its incoherence.
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Speedith deploys diagrammatic tactics to facilitate user interactions and de-
vise a higher abstraction level in proofs which renders them more self-explana-
tory [11]. The choice of tactics is guided by metrics related to the readability of
proofs (e.g. length of proof, the amount of clutter) and are informed by empirical
studies. Our work presents a step change in that we directly test the accessibility
of inferences themselves.

7 Conclusion and future work

Usability and accessibility of reasoning systems is paramount to harness their
utility in diverse domains. By developing an interactive diagrammatic theorem
prover iCon, we demonstrated that it is possible to build a formal reasoning
system that is based on empirical studies of what humans find accessible.

iCon implements the logic of concept diagrams and can be applied in vari-
ous domains (e.g., for reasoning in ontology engineering as presented here). We
focused on deduction patterns found in [12], which also discusses their signifi-
cance in terms of commonality and coverage. In order to gain an insight into
how to implement the concept diagrams version of these patterns, we conducted
an empirical study that identified that the level of abstraction and granularity
of inference rules did not affect what human reasoners find accessible in general,
but was rule specific. We used this result and others explained in Section 4.3 to
guide the design and implementation of iCon’s inference rules.

Displaying the application of inferences via the GUI presents many challenges
and avenues for future work. Laying out the drawn diagrams after each inference
requires analysing the invariant parts of the diagrammatic statement, because
these are the syntactic elements that must remain unchanged before and after
the application of the inference rule. But there are choices and trade-offs between
what elements could or should be preserved. We are planning to conduct a user
study that will investigate where this trade-off lies with the human users. Fur-
thermore, the layout algorithms of iCon should preserve certain wellformedness
properties of the diagrams [14]. For example, ideally a curve should not be split
into two disjoint curves with the same label. Improving layout algorithms for
iCon’s GUI remains future work.
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