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Abstract 

 

  

Glass is a critical material for many scientific and engineering applications including 

optics, communications, electronics, and hermetic seals. Despite this technological relevance, 

there has been minimal research toward Additive Manufacturing (AM) of glass, particularly 

optically transparent glass. Additive Manufacturing of transparent glass offers potential 

advantages for lower processing costs for small production volumes, increased design freedom, 

and the ability to locally vary the optical properties of the part. Compared to common soda lime 

glass, fused quartz is better for AM since it has lower thermal expansion and higher index 

homogeneity. This paper presents a study of additive manufacturing of transparent fused quartz 

by a filament fed process. A CW CO2 laser (10.6 µm) is used to melt glass filaments layer by 

layer. The laser couples to phononic modes in the glass and is well absorbed. The beam and melt 

pool are stationary while the work piece is scanned using a standard lab motion 

system. Representative parts are built to explore the effects of variable laser power on the 

properties of printed fused quartz. During printing the incandescent emission from the melt pool 

is measured using a spectrometer. This permits process monitoring and identifies potential 

chemical changes in the glass during printing. After deposition, the printed parts are polished and 

the transmission measured to calculate the absorption/scattering coefficient. Finally, a low-order 

thermal analysis is presented and correlated to experimental results, including an energy balance 

and finite volume analysis using Fluent. These results suggest that optical quality fused quartz 

parts with low absorption and high index of refraction uniformity may be printed using the 

filament-fed process. 

 

Introduction 

 

 Additive Manufacturing (AM) is an increasingly popular technology used to create three 

dimensional parts using deposition processes. AM has long been used for creating structural 

elements where the transparency of the part was not among the important design constraints. 

Recently several groups have demonstrated using AM of optical components. This work has 

been primarily based on polymers and includes studies using ink-jet printing [1-3], ink jet 

printing with in-situ UV curing [4], The Selective Laser Sintering (SLS) of polymers infiltrated 

with indexed matched plastic in post processing [5], and multiphoton stereolithography (SLA) 

[6]. These process have allowed the rapid prototyping of non-imaging optics, display surfaces of 

arbitrary geometries, sensors, interactive devices [1-3, 7], and GRadient INdex (GRIN) devices. 
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The latter were created using layer-to-layer fabrication with locally adjusted indices of refraction 

[4]. 

While significant progress has been made in printing transparent polymers, polymers are 

typically used for low cost and low power optics. Inorganic materials like glasses are more suited 

to high-quality, high power optics because they have high transmissivity (particularly in the 

ultraviolet and infrared), glasses have lower coefficients of thermal expansion and, unlike 

polymers, their indices of refraction are thermally stable [8]. Like plastics, glass is amorphous 

and does not present crystalline boundaries for scattering. The SLS process has been used to 

print fused quartz [9], borosilicate [10], and soda-lime glasses [11, 12]. Extrusion techniques 

have been used to print bone scaffolds of bioactive glass [13], and to print pattern colored glass 

[14]. Marchelli et al. have demonstrated printing glass using an inkjet method with a 

maltodextrin binder that was burnt out in post processing [15]. These studies have focused on the 

ability to create dimensionally accurate glass parts, but rely on an organic binder that must be 

burnt-out in post processing. This leads to small gas inclusions which act as scattering sites and 

leave the final parts not transparent. Luo et al. previously showed that a continuous filament fed 

process was capable of printing fully dense and optically transparent soda lime glass [12]. This 

process is similar to the AM Fused Deposition Modeling (FDM) process for depositing 

thermoplastics and laser wire-deposition processes used in metal AM [16].s 

Soda-lime glass includes additives to reduce its melting point and improve its workability. 

On the other hand, fused quartz is nearly pure silica. Fused quartz has a high thermal shock 

resistance due to its low coefficient of thermal expansion, and is more transmissive than soda-

lime glass for ultraviolet and infrared (IR) wavelengths. A softening temperature in excess of 

1600°C makes manufacturing fused quartz more challenging than soda-lime glass [17]. AM 

methods demonstrated for printing fused quartz do not produce transparent parts due to trapped 

bubbles [9]. This paper presents the study of an AM process that prints clear fused quartz, and 

explores the effects that laser power has on the morphologic and optical properties of the printed 

material. The optical quality of 2D walls is determined through transmittance, Modulation 

Transfer Function (MTF), and the calculation of the refractive index. Finally a thermal analysis 

is conducted to estimate the melt pool temperature for different laser powers with constant feed 

rates and scan speeds. 

Experimental Procedure 

 

The properties of fused quartz make it difficult to print transparent parts using 

conventional AM techniques. Nozzle based extrusion processes cannot be used due to the high 

transition temperature of quartz and the wetting of metal oxides which cause potential clogging 

issues. Due to its nonconductivity electric arc generated plasmas are also ineligible as an AM 

technique for quartz. However, by using a laser to heat a rigid filament external to the feeder, 

fused quartz can be continuously deposited onto a moving platform. An example of the 

experimental setup is illustrated in Figure 1.  
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Fig. 1. Illustration and photograph of filament-fed fused quartz AM process 

 

A ceramic refractory block is secured to numerically controlled 3 axis stages. This 

provides a material for the fused quartz to wet and thermally isolates the stages. The x and y 

stages (Thorlabs DDMS100) are actuated via direct-drive brushless servo motors. The build 

platform is raised and lowered by a scissor type lab-jack (Thorlabs L490MZ). Since fused quartz 

is opaque in the long-wave infrared portion of the electromagnetic spectrum [18], a fixed CO2 

laser beam (Synrad Evolution 125, λ0 = 10.6 μm) is used as the energy source to maintain the 

melt pool. 

 

Fused quartz has a low coefficient of thermal expansion (5×10
-7

 K
-1

) [17], which is less 

than 10% of soda-lime glass. Cracking during the deposition and cooling process did not occur 

for small pieces of printed fused quartz (this does occur for similar soda-lime glass pieces [12]). 

For larger pieces a preheated substrate may be beneficial as thermal stresses may build up do to 

the increased thermal resistance of the pieces. For these experiments 1 mm diameter GE 214 

fused quartz filaments are used as feedstock. The filaments are fed into the melt pool at a 45° 

angle from the normal using a custom designed wire feeder. This feeder was designed to be 

consistent with the literature on wire-fed metal AM [19-20] and is driven by a computer 

controlled stepper motor. The filament is manually aligned so that it passes through the 

intersection of the laser beam and the refractory block (or previous layer). The Full Width Half 

Maximum (FWHM) diameter of the laser beam is measured to be 200 μm at this intersection. 

During the experiment, 1% of the laser beam is reflected into a thermopile power meter (Ophir 

10A –V1). The power delivered to the filament/workpiece can be determined in-situ by scaling 

this measurement. In order to ensure the stability of the laser, the laser was set to a constant 

power (measured variation ±1.5%) and is regulated with a water cooled shutter during processing. 

An OceanOptics USB-4000 fiber-coupled spectrometer is focused on the filament/workpiece 

intersection (mounted at a distance of 5 cm). The interrogation area the spectrometer is 

approximately a 3 mm diameter circle. This permits visible/NIR radiation emitted from the melt 

pool to be resolved spectrally. 

For the following experiments, the fused quartz is deposited by a constant feeding of the 

filament into the melt pool. This process creates a single glass line with a uniform height and 

width. 3D structures are created by repeating this process after lowering the stage by a set 

amount. 
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Results and Discussion 

Morphology result 

 The morphology of deposited fused quartz depends on the laser power, material feed rate 

and part scan speed. These process parameters, determine the temperature of the molten region. 

The temperature increases when the laser power increases, or the material feed rate or the part 

scan speed decreases. If the temperature of the molten region is too low, the filament is not 

sufficiently melted resulting in a failed part. If the temperature is too high, the melted glass starts 

to ball up at the end of the fiber due to the low viscosity. This causes the top layer to disconnect 

from previous layers resulting in a failed discontinuous part. For a material feed rate of 1 mm/s, a 

part scan speed of 0.5 mm/s, and laser powers of 30-50 W good fused quartz walls Fig. 2 (b) are 

produced: walls that are continuous and whose sides are normal to the build plane. Laser powers 

below 30 W and above 50 W results in failed walls. An example of a good wall, and both failure 

conditions are shown in Fig. 2. 

 

 
Fig. 2. (a) A failed underfed wall (25 W) (b) A good wall (35 W) (c) A failed over melted wall 

(60 W)  

 

Melt pool spectral results  

 

As shown in Fig. 1(b), the melt pool constantly emits incandescent light during 

deposition. The spectrometer was used to measure this radiation melt pool. This spectrometer 

was calibrated with an OceanOptics LS-1-CA 2800 K light source. As the objective of this study 

is to investigate the effects that different laser powers have on the transparency of printed fused 

quartz, the radiation spectrum data was collected when the laser beam was at the center of the 

path of travel on the fifth deposited layer. This was done to mitigate the effects of the substrate, 

and the edges of the walls and provide a correlation between emitted light and the temperature of 

the melt pool. The spectra is plotted in Fig. 3. As the emissivity of fused quartz has been shown 

to vary in respect to wavelength [21], the shape of radiation spectrum of fused quartz is 

significantly different with blackbody. For laser powers between 20 and 40 W, the radiation peak 

shifts towards shorter wavelengths as the laser power increases, according to Wein’s 

displacement law. This trend is not observed for higher laser powers. Their spectral peak is 

invariant at λ=740 nm and the melt pool begins to release fumes. This suggests that the 

vaporization of the fused quartz stabilizes the temperature of the melt pool. The increase in 

intensity is due to the spectrometer interrogation area being up to three times larger than the melt 

(a) (b) (c) 

1 cm 
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pool in normal operation. At high laser powers the melt pool is enlarged which is reflected in the 

recorded intensity. These spectrometer results are consistent with the experimental results found 

in Yang et. al. [22].  

 
Fig. 3. Radiation spectra of fused quartz melt pools for in different laser powers 

 

Optical results 

 

The experimental refractive indices were measured after the fused quartz walls were 

polished with a 1 µm grit lap disk. This was done to separate the effects of surface refraction 

from the material transmittance. Polishing reduces refractive effects but introduces surface 

scatter. An ellipsometer (J.A. Woollam M-VASE) was used to measure the experimental 

refractive indices, and the results are plotted in Fig. 4. These measurements were consistent 

between the quartz walls printed at different powers. There are some differences between the 

measured indices of refraction and the published indices of refraction [23], mainly at low 

frequencies. This is most likely due to the Raleigh scattering of light from the polished surface 

finish.  

 

 
Fig. 4. Refractive index of fabricated fused quartz after polishing. 
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 Even a perfectly polished flat quartz lens is not fully transmissive. There is some power 

loss due to Fresnel reflection, the Fresnel reflection at normal incidence is given by R = [(1-

n)/(1+n)]
2 

[24]. In the absence of absorptance the transmittance is equal to (1-R)
2
. The actual 

transmittance was measured using an OceanOptics USB-4000 spectrometer. The fused quartz 

samples were placed at the focal point of the second lens so that the light scattered by the 

samples could be collected by the spectrometer. The transmittance is measured by normalizing 

the transmitted spectrum through the samples without the samples. In the experiment the sample 

was illuminated with a solid angle 0.7, and collected by the spectrometer with a solid angle 1.32. 

This permits some of the light scattered by imperfections in the polishing process as seen by to 

be collected. Figure 5 shows the transmittance of printed walls in different wavelengths. This 

result shows that the transmittance is not dependent on the laser power used to print it.  

 

 

 
Fig. 5. (a) Transmittance measurement setup (b) Relative glass wall transmittance in 

visible spectrum range. 

 

After accounting for reflection, the fused quartz is transparent within the measurement 

accuracy of the experiment at NIR wavelengths. The reduced transmission at shorter 

wavelengths may be due to Rayleigh scatter off of polishing defects. Another concern for printed 

optics is index homogeneity: making sure the index of refraction does not vary across the printed 

part for uniform material deposition. Even small variances in index of refraction may 

significantly degrade the optical performance of a system. To evaluate the index homogeneity, 

samples were inserted into the optical path of a simple microscope which was used to image a 

test pattern. This allowed the effects of adding the quartz to be quantified with the Modulation 

Transfer Function (MTF). MTF is a measure of the transfer of modulation (or contrast) from the 

subject to an image. In this study, the USAF 1951 was used as a test pattern. This pattern can be 

seen in Fig. 6(b). As the spatial resolution of the optical system decreases the modulation depth 

of the image, M, also decreases and the image becomes blurry. The parameter M is defined as 

[26] 
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 (1) 

 

where Amax is the maximum intensity and Amin is the minimum intensity in the lines pattern. 

Spatial frequency is measured in lines per mm (mm
-1

). In order measure the transfer of 

modulation, the test samples were separated from the object by 30 mm when each sample was 

photographed. This experimental setup can be seen in Fig. 6. The MTF of each of the 

experimental samples, and that of a microscope slide, were calculated using the line patterns of 

the 4
th

 group of the USAF 1951 test pattern. The 4
th

 pattern was chosen as its image, as produced 

by the optical system, contains lines that range from clear to blurry. The MTF results show that 

the spatial resolution of quartz walls is comparable to that of the microscope slide, and the laser 

power does not influence the resolution of the walls.  

 

  
Fig. 6. (a) Method for image measurements (b) an example of the images being analyzed 

(c) MTF results for all samples with inset showing photograph of entire test pattern. 

 

For every optical system, there is an image too small for it to render. This limit is called 

cutoff spatial frequency. At this frequency M = 0, that is, the image is completely blurry and 

there is no distinction between shapes [26]. The cut off spatial frequency for the optical system 

used in the MTF experiment was calculated to be ξcutoff =1/(λ F/#) =181 mm
-1

, where λ is the 

wavelength of light which is assumed to be 550 nm, F/# is the unitless f number of the camera, 

10.  

 

The spatial frequency of images that can be resolved using the experimental set up is 

much lower than ξcutoff. This is because the pixel length in the image is only 11 µm, the same 

magnitude of the line width that is being measured (17.54 µm), the pattern itself has a spatial 

frequency of 28.51 mm
-1

. This implies that the limiting factor of measuring the clarity of the 

experimental quartz pieces lies not with the quartz, nor the cutoff frequency, or even the 

diffraction limit, but with the resolution of the camera that was used to capture the image. 
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Thermal Analysis 

 

Glass enters the melt pool as a filament and exits as a printed line as seen in Fig. 7. The 

density of glass is not strongly dependent on temperature and the mass balance can be expressed 

as: 

   

2

4
in f out cm D f m A v


    

  (2) 

 

where Df is the diameter the filament and Ac is the cross sectional area of the printed track. 

 
Fig. 7. Mass and energy balance surrounding melt pool. 

 

At steady state the change in energy around the molten region is zero and is expressed as, 

 

  
 E 0s f c rP m h q q q q       

  (3) 

 

where P is the laser power, Δh is the specific enthalpy increase of the glass from inlet to outlet, 

qs is the heat lost to the substrate, qf is the heat transferred to the filament, and qr and qc represent 

the heat exchanged with the surroundings via radiation and convection, respectively. The heat 

transfer from the melt pool to the glass wall is a complex process with temperature dependent 

thermal properties. The following assumptions are made to significantly simplify the heat 

transfer analysis: 1) the temperature is uniform in the molten region; 2) the shape of the molten 

region is constant; 3) the convection coefficient is taken to be 10 W/m
2
·K, and is temperature 

independent; and 4) the filament acts as an extended surface subject to convection and radiation, 

but advection is neglected.  

 

Fused quartz is an amorphous material and transitions gradually from the solid to liquid 

phases. Unlike crystalline materials, there is no specific melting point or discrete enthalpy of 

fusion, so its temperature continues to rise as the viscosity decreases. Glass enters the control 

volume as a solid filament at room temperature, Ti, is heated by the laser until it leaves the 

control volume at the temperature of the melt, Tm, and begins to cool. 

 

The heat transfer from the melt pool to the air includes convection (qc) and radiation (qr). 

For a hemispherical molten region of diameter, Dm, these are given, respectively, by 
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4
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   (4) 

and   

                         
 2 4 4

4
mr mq D T T


 

 
  

           (5) 

 

where h is the heat convection coefficient, T∞ is the ambient temperature which is assumed to be 

the same as the surroundings, ε is the emissivity of glass, and σ is Stefan-Boltzmann constant. 

 

The heat conduction from the laser heated spot through the substrate (qs) was calculated 

using a Finite Volume Method (FVM) model in ANSYS FLUENT (a commercial thermo-fluid 

analysis package). The objective of the simulation is to relate the laser power to a representative 

temperature in the molten region. In the simulation, a laser beam was scanned along the center of 

an infinitely long rectangular wall. The simulation is allowed to progress until the temperature 

distribution is invariant with respect to distance. Practically, this involved scanning the laser for 

distances ranging from 40 to 60 mm, for a scan speed 0.5 mm/s, and for laser powers ranging 

from 20 W to 60 W. The relationship between Tm and qs is  

 

  
5 24 10 0.216 264.08 2827

0.4898 1344.3 2827

m m

s

T T T
q

T W T

    
 

 
   (6) 

 
where the temperature T is expressed in °C. 

 
Since the diameter of the filament is small compared to its length, the heat conduction 

along the filament is assumed to be 1D, with a temperature only dependent the length direction 

(i.e., the direction in which it is fed). The temperature of the end connected with the melt pool is 

the average temperature of melt pool, and the temperature on the other end is the ambient 

temperature. The heat conducted into the filament is the sum of the heat convection and radiation 

from the filament to the air and the heat transferred by advection. A second order ODE is 

obtained by truncating the Taylor expansion of qf  

 

   
2

4 4 0
4

f f

c f f c p

dT dTd D
k h D T T D T T A fc

dx dx dx


   

  
        

  
        (7) 

 

where D is the filament diameter, Tf is the temperature inside the filament, ρ is the density of 

glass. The boundary conditions are: T = Tm, x = 0; T = T∞, x = ∞. When Tm is known, the 

temperature distribution inside the filament is obtained by solving (7) numerically. The heat 

transferred into the filament is calculated from the temperature gradient (qf =k dT/dx|x=0) at the 

end of filament that is in the melt pool. Evaluating Eq. (7) using a finite difference approach 

shows that the heat transferred (qf) into the filament also varies as a nearly linear function of the 

temperature of the molten region. For temperatures in excess of 1000°C and below the 

vaporization temperature and a 1 mm diameter filament, this can be approximated as 
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   32.600 10 W/K 0.7771 Wf mq T                         (8) 

 

The temperature of the molten region can be estimated by solving Eq. (3). The 

temperature of the molten region is plotted as a function of the laser power in Fig. 8. The melt 

pool temperature increases with the laser power linearly until it reaches 2827°C. Then it keeps 

nearly constant at 2827°C due to the vaporization of the fused quartz. This result is in consistent 

with the spectrometer result, which shows that the temperature does not vary in the laser power 

range of 40 to 60 W due to the remelting of the previous layers and the vaporization of the fused 

quartz. 

 

 
Fig. 8. Estimated molten region temperature using energy balance model for infinitely long wall. 

 

 

Summary and Conclusions 

 

This paper demonstrates the deposition of fused quartz parts using a filament fed additive 

manufacturing process. Good quartz walls can be made using the filament fed process with laser 

powers between 30 W and 50 W. Optical testing shows that the optical characteristics of these 

samples (index of refraction, transmittance, and index homogeneity) is independent of the laser 

power. This result is supported by low-order temperature modeling of the process which suggests 

that the temperature over this power range is determined by the vaporization point of quartz. 

Compared to soda-lime glass, fused quartz has several advantages for AM, including minimal 

reboil and spatial index variation, as well as high index homogeneity. Some of these phenomena 

can be explained by the low order model included in this paper. Future work will incorporate a 

precision motion system into the experimental set up. This will allow the creation of a process 

parameter map for the AM of quartz, as well as other materials like borosilicate glass and 

alumina.  
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