1,026 research outputs found

    EFFECT OF RACCOON (PROCYON LOTOR) REDUCTION ON BLANDING’S TURTLE (EMYDOIDEA BLANDINGII) NEST SUCCESS

    Get PDF
    The Lake County Forest Preserve District has monitored a state-endangered Blanding’s Turtle (Emydoidea blandingii) population at two adjoining nature preserves along the Illinois–Wisconsin border since 2004. Prior to predator management, 92.3% of documented and unprotected natural Blanding’s Turtle nests (12 of 13) and 88% of monitored artificial nests have been at least partially depredated. The goal of this study was to determine the efficacy of subsidized Raccoon (Procyon lotor) removal efforts in increasing the nest success of Blanding’s Turtles. During April–May 2013 and 2014, we captured and euthanized 78 Raccoons from our 2 km2 study area. We estimated pre-removal abundance estimates using the Leslie depletion method; it appeared that we removed 83–89% of the Raccoons from the study area each year and pre-removal density estimates were 37.5% lower in 2014 than 2013. During the study period, we monitored 22 Blanding’s Turtle in situ unprotected nests. In 2013, one of seven (14%) Blanding’s Turtle nests was partially depredated and no nests were completely depredated, indicative of a successful impact of Raccoon removal on Blanding’s Turtle nest success. However in 2014, nine of 15 (60%) Blanding’s Turtle nests were depredated. Our results provide some evidence that removal of Raccoons may have increased Blanding’s Turtle nest success but other factors, such as a functional response of surviving Raccoons or depredation by other subsidized predators may be contributing to decreased nest success

    Prediction of sustained harmonic walking in the free-living environment using raw accelerometry data

    Get PDF
    Objective. Using raw, sub-second level, accelerometry data, we propose and validate a method for identifying and characterizing walking in the free-living environment. We focus on the sustained harmonic walking (SHW), which we define as walking for at least 10 seconds with low variability of step frequency. Approach. We utilize the harmonic nature of SHW and quantify local periodicity of the tri-axial raw accelerometry data. We also estimate fundamental frequency of observed signals and link it to the instantaneous walking (step-to-step) frequency (IWF). Next, we report total time spent in SHW, number and durations of SHW bouts, time of the day when SHW occurred and IWF for 49 healthy, elderly individuals. Main results. Sensitivity of the proposed classification method was found to be 97%, while specificity ranged between 87% and 97% and prediction accuracy between 94% and 97%. We report total time in SHW between 140 and 10 minutes-per-day distributed between 340 and 50 bouts. We estimate the average IWF to be 1.7 steps-per-second. Significance. We propose a simple approach for detection of SHW and estimation of IWF, based on Fourier decomposition. The resulting approach is fast and allows processing of a week-long raw accelerometry data (approx. 150 million measurements) in relatively short time (~half an hour) on a common laptop computer (2.8 GHz Intel Core i7, 16 GB DDR3 RAM)

    Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy

    Get PDF
    It is generally believed that increase in adult contractile cardiac mass can be accomplished only by hypertrophy of existing myocytes. Documentation of myocardial regeneration in acute stress has challenged this dogma and led to the proposition that myocyte renewal is fundamental to cardiac homeostasis. Here we report that in human aortic stenosis, increased cardiac mass results from a combination of myocyte hypertrophy and hyperplasia. Intense new myocyte formation results from the differentiation of stem-like cells committed to the myocyte lineage. These cells express stem cell markers and telomerase. Their number increased >13-fold in aortic stenosis. The finding of cell clusters with stem cells making the transition to cardiogenic and myocyte precursors, as well as very primitive myocytes that turn into terminally differentiated myocytes, provides a link between cardiac stem cells and myocyte differentiation. Growth and differentiation of these primitive cells was markedly enhanced in hypertrophy, consistent with activation of a restricted number of stem cells that, through symmetrical cell division, generate asynchronously differentiating progeny. These clusters strongly support the existence of cardiac stem cells that amplify and commit to the myocyte lineage in response to increased workload. Their presence is consistent with the notion that myocyte hyperplasia significantly contributes to cardiac hypertrophy and accounts for the subpopulation of cycling myocytes

    TEN-YEAR STATUS OF THE EASTERN MIGRATORY WHOOPING CRANE REINTRODUCTION

    Get PDF
    From 2001 to 2010, 132 costume-reared juvenile whooping cranes (Grus americana) were led by ultralight aircraft from Necedah National Wildlife Refuge (NWR) in central Wisconsin to the Gulf Coast of Florida on their first autumn migration (ultralight-led or UL), and 46 juveniles were released directly on Necedah NWR during autumn of the hatch year (direct autumn release or DAR). Return rate in spring was 90.5% for UL and 69.2% for DAR, the lower value of the latter attributable to 1 cohort with migration problems. Overall population survival 1 year and from 1 to 3 years post-release was 81% and 84%, respectively. Survival 1 year post-release was significantly different between UL (85.1%) and DAR (65.7%) cranes. Since summer 2008, DAR migration and wintering have improved, winter distribution of the population has changed, the migration route of the population has shifted westward, and number of yearlings summering in locations used during spring wandering has increased. Human avoidance problems resulted in 2 birds being removed from the population. As in earlier years, homing to the natal area and prolific pair formation continued (29 of 31 adult pairs have formed in the core reintroduction area), predation continued to be the primary cause of mortality, and parental desertion of nests, especially during the initial (primary) nesting period, continued. During 2005-2010, all 43 of these early nests failed; of 15 late nests or renests, chicks hatched from 8 nests, and 3 chicks fledged. As of 31 March 2011, the population contained a maximum 105 individuals (54 males and 51 females) including 20 adult pairs

    NEST DESERTION IN A REINTRODUCED POPULATION OF MIGRATORY WHOOPING CRANES

    Get PDF
    Reintroduction of an eastern migratory population of whooping cranes (Grus americana) into eastern North America began in 2001. Reproduction first occurred in 2005. Through 2008, eggs were produced in 22 first nests and 2 renests. All first nests failed–50% confirmed due to desertion by the parents and the remaining nest failures also consistent with the pattern of parental desertion. Nest failures were not related to stage of incubation, and they were often synchronous. Temperatures in winter and early spring affected timing of nest failure. An environmental factor such as harassment of incubating cranes by black flies (Simulium spp.) may be responsible for widespread nest desertion

    Geophysics

    Get PDF
    Contains reports on three research projects

    Amino acid substitution equivalent to human chorea-acanthocytosis I2771R in yeast Vps13 protein affects its binding to phosphatidylinositol 3-phosphate

    Get PDF
    The rare human disorder chorea-acanthocytosis (ChAc) is caused by mutations in hVPS13A gene. The hVps13A protein interacts with actin and regulates the level of phosphatidylinositol 4-phosphate (PI4P) in the membranes of neuronal cells. Yeast Vps13 is involved in vacuolar protein transport and, like hVps13A, participates in PI4P metabolism. Vps13 proteins are conserved in eukaryotes, but their molecular function remains unknown. One of the mutations found in ChAc patients causes amino acids substitution I2771R which affects the localization of hVps13A in skeletal muscles. To dissect the mechanism of pathogenesis of I2771R, we created and analyzed a yeast strain carrying the equivalent mutation. Here we show that in yeast, substitution I2749R causes dysfunction of Vps13 protein in endocytosis and vacuolar transport, although the level of the protein is not affected, suggesting loss of function. We also show that Vps13, like hVps13A, influences actin cytoskeleton organization and binds actin in immunoprecipitation experiments. Vps13-I2749R binds actin, but does not function in the actin cytoskeleton organization. Moreover, we show that Vps13 binds phospholipids, especially phosphatidylinositol 3-phosphate (PI3P), via its SHR_BD and APT1 domains. Substitution I2749R attenuates this ability. Finally, the localization of Vps13-GFP is altered when cellular levels of PI3P are decreased indicating its trafficking within the endosomal membrane system. These results suggest that PI3P regulates the functioning of Vps13, both in protein trafficking and actin cytoskeleton organization. Attenuation of PI3P-binding ability in the mutant hVps13A protein may be one of the reasons for its mislocalization and disrupted function in cells of patients suffering from ChAc

    Nudge to Nobesity I: Minor Changes in Accessibility Decrease Food Intake

    Get PDF
    Very small but cumulated decreases in food intake may be sufficient to erase obesity over a period of years. We examine the effect of slight changes in the accessibility of different foods in a pay-by-weight-of-food salad bar in a cafeteria serving adults for the lunch period. Making a food slightly more difficult to reach (by varying its proximity by about 10 inches) or changing the serving utensil (spoon or tongs) modestly but reliably reduces intake, in the range of 8-16%. Given this effect, it is possible that making calorie-dense foods less accessible and low-calorie foods more accessible over an extended period of time would result in significant weight loss

    Stride variability measures derived from wrist- and hip-worn accelerometers

    Get PDF
    Many epidemiological and clinical studies use accelerometry to objectively measure physical activity using the activity counts, vector magnitude, or number of steps. These measures use just a fraction of the information in the raw accelerometry data as they are typically summarized at the minute level. To address this problem we define and estimate two gait measures of temporal stride-to-stride variability based on raw accelerometry data: Amplitude Deviation (AD) and Phase Deviation (PD). We explore the sensitivity of our approach to on-body placement of the accelerometer by comparing hip, left and right wrist placements. We illustrate the approach by estimating AD and PD in 46 elderly participants in the Developmental Epidemiologic Cohort Study (DECOS) who worn accelerometers during a 400 meter walk test. We also show that AD and PD have a statistically significant association with the gait speed and sit-to-stand test performanc
    • …
    corecore