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Abstract

Many epidemiological and clinical studies use accelerometry to objectively measure physical 

activity using the activity counts, vector magnitude, or number of steps. These measures use just a 

fraction of the information in the raw accelerometry data as they are typically summarized at the 

minute level. To address this problem, we define and estimate two measures of temporal stride-to-

stride gait variability based on raw accelerometry data: Amplitude Deviation (AD) and Phase 

Deviation (PD). We explore the sensitivity of our approach to on-body placement of the 

accelerometer by comparing hip, left and right wrist placements. We illustrate the approach by 

estimating AD and PD in 46 elderly participants in the Developmental Epidemiologic Cohort 

Study (DECOS) who worn accelerometers during a 400 meter walk test. We also show that AD 

and PD have a statistically significant association with the gait speed and sit-to-stand test 

performance.
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1 Introduction

Accelerometers are now ubiquitous in health studies, where they are used to provide 

objective and reproducible proxy measurements of physical activity. Examples of such 

studies include both large surveillance and epidemiological cohorts, such as the National 

Health and Nutrition Examination Survey (NHANES) [1] and the Baltimore Longitudinal 

Study of Aging (BLSA) [2], and clinical studies of chronic disease, such as Alzheimer’s 

Disease [3], Multiple Sclerosis [4] and Heart Disease [5]. The primary activity 

measurements in these studies are usually limited to crude summaries of the 24-hour activity 

cycle such as the total daily activity count, vector magnitude, or number of steps. When 

walking is of primary scientific interest, steps-based summaries provide useful information 

about “how much” and “when” the person is walking, but do not provide any information 
about “how” the person is walking or “whether” their walking changes during the course of 
the day. This type of information can be crucial in clinical and observational studies as it 

provides information about the intrinsic characteristics of walking and the associated 

variability. Understanding the association between these characteristics and levels of fatigue 

and fatigability in healthy and frail populations is a major step towards identifying 

parameters that are intuitive, can be easily extracted from raw accelerometry data, and are 

relevant to health studies. Quantifying gait parameters and ambulatory monitoring of 

changes in these parameters has become increasingly important for epidemiological, clinical 

and rehabilitation studies.

Several approaches extracting time-dependent gait parameters were developed and 

successfully applied to data collected from body-worn accelerometers [6] [7] [8]. These 

approaches demonstrated a significant discriminative power in studies of clinical pathology 

[9] [10], fatigability [11] [12], and aging [13] [14] [15]. Stride-to-stride variability is an 

important gait parameter that quantifies participants’ ability to maintain walking consistency 

and is strongly associated with motor ability [16] [17] [9]. Stride-to-stride variability has 

been linked to Mild Cognitive Impairment [18], dementia [19], and stroke [20]. One of the 

limitations of current approaches is that they are based on data obtained from accelerometers 

placed around the middle of the body (hip, lower back) [21] [22]. However, more research 

has recently shifted towards wrist-worn accelerometers such as the Actigraph Link, 

GENEActiv Watch, Fitbit Flex and Jawbone Up. This shift is likely due to their ease of use, 

increased compliance of study participants, and improvements in size and battery life [1]. 

This shift raises new challenges to estimating gait parameters, as hands are involved in a 

much wider spectrum of activities, which results in higher complexity and increased within- 

and between-subject variability [23].

We propose a method to extract two measures of stride-to-stride variability: Amplitude 

Deviation (AD) and Phase Deviation (PD). These measures are based on the amplitude of 

acceleration and duration of consecutive strides, respectively. We compare the performance 

of AD and PD calculated based on raw accelerometry data obtained from three body 

locations: the hip, the left wrist, and the right wrist. We evaluate the sensitivity of AD and 

PD as a function of on-body placement in 46 participants of the Developmental 

Epidemiologic Cohort Study [24]. To benchmark AD and PD against standard accelerometry 

summaries and physical function tests, we evaluate their association with four measures: 
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cadence (C), vector magnitude counts (VMC), time on Five-Times-Sit-To-Stand (Chr5s) test 

[25] and usual gait speed measured on a 6 meter distance test (Pace6m) [26].

2 Methods

2.1.1 Participants

Eighty-nine community-dwelling older adults were recruited from the Pittsburgh, 

Pennsylvania area for the National Institute on Aging, Aging Research Evaluating 

Accelerometry (AREA) project, part of the Developmental Epidemiologic Cohort Study 

(DECOS). AREA was a methodological initiative designed to examine the impact of 

accelerometry wear location on assessment of physical activity and sedentary behavior. This 

report includes data from 46 participants (25 males and 21 females; age: 78±4 y.o.; BMI: 

26.75±3) who had completed fast paced 400 meter walk test, were in a good overall physical 

health and reported no current history of medical conditions that could affect gait. 

Individuals were excluded from the study if they suffered from any of the following 

conditions: hip fracture, stroke in the past 12 months, cerebral hemorrhage in the past 6 

months; heart attack, angioplasty, or heart surgery in the past 3 months, chest pain during 

walking in the past 30 days, current treatment for shortness of breath or a lung condition, 

usual aching, stiffness, or pain in their lower limbs and joints and bilateral difficulty bending 

or straightening the knees fully [24]. All participants were right-handed.

2.1.2 Measurement protocol

Fast paced 400-meter walk is a standardized test measuring physical function often 

employed by epidemiological studies [27]. The test consisted of 20 consecutive laps, 20 

meters each. For each participant we chose data collected during the second lap of the 400 

meters trial as it is expected that during this lap gait parameters are more likely to represent 

normal gait characteristics for each participant [28]. The reasons are that during the first lap 

individuals may try to outperform, experience larger variability in the first part of the 

experiment, while effects of fatigue are less likely to occur only after 20 meters. During the 

task participants wore three ActiGraph GT3X+ devices (each with three orthogonal axes, 

sampling frequency: 80 observations/second) located on the hip, the left and right wrists. 

Data were collected in parallel from all three sensors and synchronized at the sub-second 

level between devices.

2.2 Data analysis

The three-axial acceleration signal was first reduced to the vector magnitude

which is less sensitive to device rotation and small changes in position. Here x, y, z are the 

acceleration signals measured along the three orthogonal axes and i represents time. For 

presentation clarity we have dropped indices corresponding to participant and sensor 

locations.
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We used fast Fourier transformation of the vector magnitude data from the second lap of the 

400-meter walk trial. For each walk-trial and sensor location the mean cadence C was 

estimated by identifying the spectral peaks corresponding to stride-to-stride frequency. 

Cadence is expressed in steps-per-second and is defined as C = 2f, where f is the frequency 

location of the spectral peak corresponding to stride-to-stride frequency (express in Hz). To 

express cadence in steps per minute, C could be multiplied by 60. An example of Fourier 

spectrum with estimated location of the peak of interest is presented in the top panel of 

Figure 1.

To estimate the duration of consecutive strides, we first extracted the walking-specific signal 

using a band-pass FFT filter ranging from 0.75C to 1.25C (where C denotes cadence). We 

have selected the filter band that depends on cadence to allow for limited variations of the 

frequency of the extracted signal and, at the same time make sure that neighboring harmonic 

components of the gait acceleration signal (namely: 0.5C and 1.5 C) will be completely 

filtered out. The resulting filtered signal can be interpreted as a periodic wave of slowly 

varying instantaneous frequency that corresponds to durations of consecutive steps. Duration 

of each stride length was estimated by localizing even zero-crossing points (see fig.2 – 

middle panel).

2.3 Strides synchronization

After the data transformation steps described in Section 2.2, stride-specific patterns were 

time-synchronized. To do this, data was first interpolated using splines and then linearly 

aligned to 0 to 1, where location 0 marks the beginning of the stride cycle while 1 marks its 

end Fig.1, bottom panel). This transformation allows to estimate the average stride profile 

for each participant and sensor location. The average value of the amplitude of the 

acceleration signal within the stride-cycle is expressed as:

where i is an index of a stride phase ranging from 0 to 1, j denotes the stride index, and M is 

the total number of strides. Examples of average stride acceleration profiles for all three 

locations are displayed in figure 2.

2.3.1 Stride variability measures—We focus on two measures of stride variability that 

reflect differences in amplitude and phase. We define the stride-to-stride amplitude deviation 

(AD) as the mean standard deviation of synchronized activity count profiles:

where N is the number of samples for each synchronized profile, M is the total number of 

consecutive stride profiles, and Ai denotes the average stride profile at sample time i.
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We also define the stride-to-stride phase deviation (PD) as the standard deviation of 

estimated durations of strides:

where Sj denotes the duration of j-th stride expressed in seconds and 1/f is the average stride 

length estimated in Section 2.2.

2.3.2 Additional measures—Several additional parameters were estimated. In particular, 

we estimated the mean cadence, C, for each participant and device location. Cadence was 

calculated as the inverse of the average stride length multiplied by a factor of two and 

expressed in steps-per-minute. We have also computed the average vector magnitude count 

(VMC) for each sensor location. VMC is defined as the mean absolute deviation of the 

acceleration signal:

where T denotes the total number of samples for each gait acceleration signal.

2.4 Dependent variables

We compare the estimated measures, AD, PD, C and VMC, with performance measures 

obtained from standardized tests of physical function administered in the DECOS study. We 

focused on the number of chair stands per second observed during five-times-sit-to-stand 

(Chr5s) test (mean = 0.4, SD = 0.1) [25] and the usual gait speed measured by a 6-meter 

walk (Pace6m) test (mean = 1.1, SD = 0.2) [26] and expressed in meters/second.

2.5 Statistical analysis

The association between each stride characteristic and dependent variable was evaluated 

using linear regression models. Each model was adjusted for age. The estimated parameters 

and p-values for the null hypothesis of no association are presented in table 2. We have also 

calculated the correlation between measurements using the Spearman’s rank correlation ρ. 

Figure 3 displays XY-plots of the proposed measures and the estimated correlation 

coefficients.

3 Results

We compared the sensitivity to body location of the four accelerometry-derived gait 

parameters then studied their association with standard measures of physical function.

3.1 Hip vs. Wrist Placement

Figure 3 provides the pair-wise scatterplots (the upper triangle) and the corresponding 

Spearman’s rank correlations (the lower triangle) for each of the four gait parameters. 
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Stride-to-stride AD exhibits a relatively high left vs. right wrist correlation (ρ = 0.67), and a 

lower left-wrist versus hip (ρ = 0.52) and right-wrist versus hip correlations (ρ = 0.36). 

Stride-to-stride PD indicates higher left versus right wrist correlation (ρ = 0.67), and lower 

left-wrist versus hip (ρ = 0.36) and right-wrist versus hip correlations (ρ = 0.41). The 

estimated PD values using wrist accelerometry tend to be larger than PD values obtained 

using hip accelerometry.

VMC exhibited high correlation between the two wrists (ρ = 0.78) and between the hip and 

either wrist (ρ = 0.79 and 0.73, respectively). The VMC values estimated from the hip-worn 

sensor were slightly higher than those obtained from wrist-worn sensors. Cadence indicated 

much higher correlation across all three locations (ρ = 0.98, 0.99, 0.99) without significant 

bias.

3.2 Association with physical function tests

Table 2 provides the regression coefficients and the p-values of the tests for the null 

hypothesis of no-association between the newly proposed measures of gait and standard 

measures of physical function. Models are adjusted for age and were applied separately for 

each sensor placement: hip (top panel), left wrist (middle panel), and right wrist (bottom 

panel). AD was significantly associated with Chr5s for all three locations (p < 0.01) and was 

significantly associated with Pace6m for the hip-located sensor (p = 0.014). No significant 

relationship was identified between PD and any of the dependent variables. Walking-related 

VMC was strongly associated with both Chr5s and Pace6m for all three locations (p < 0.05). 

Cadence estimated from data collected at the hip was significantly associated with both 

Chr5s (p = 0.043) and Pace6m (p = 0.037). Cadence estimated from data collected at the right 

wrist was not statistically associated with Pace6m (p = 0.055) and Chr5s (p = 0.097). We have 

found statistically significant associations between the cadence estimated from data 

collected at the left wrist and Pace6m (p = 0.032) but not with Chr5s (p = 0.058).

4 Discussion

We have proposed and examined two measures of stride-to-stride variability, Amplitude 

Deviation and Phase Deviation, which can be estimated from raw accelerometry data. We 

demonstrated that AD was significantly associated with the standardized performance tests, 

Chr5s and Pace6m across three on-body locations including the left and right wrists and the 

hip. PD was not statistically significantly associated with these performance tests. As our 

population represents healthy aging participants with no clinical diagnosis, we plan to 

investigate the performance of PD in specific clinical populations. The mean cadence (C) 

and the mean vector magnitude count (VMC) were also consistently associated with Chr5s 

and Pace6m. also compared AD and PD across the three on-body locations, they were more 

correlated for data collected at the left and the right wrists and less correlated for data 

collected at the wrist versus hip. This showed that while hip-located sensors produce the 

most useful data. Wrist however, is still a very promising location, especially for simple yet 

robust measures like VMC and C.

Presented findings suggest that relatively simple characteristics of stride (VMC and C) and 

stride-to-stride variability (AD) can be useful to assess the physical function and mobility of 
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individuals. Although, there are existing algorithms can identify fine-tuned parameters of 

gait [21] [22] and return a wider spectrum of metrics, they often require a symmetric on 

body placement of the sensor that limits practical applications exclusively to trunk-placed 

devices. We believe that the proposed measures are more universal and robust across 

different body locations of the sensor.

One of the limitations of all wrist-based accelerometry-derived gait parameters is that 

sensors record arm movement, which are proxies of walking strides [29]. Moreover, 400-

meter walk does not reflect in full the character of daily walking of individuals. For 

example, in the free-living environment one would expect long periods of walking without 

arm swinging (e.g. because hands are in the pocket or handling a phone), walking on 

different surfaces or climbing stairs. However, our results indicate the accelerometry-derived 

parameters can be useful in studies of normative aging and may offer opportunities for 

monitoring temporal gait variability in impaired populations. We conclude that raw 

accelerometry data contains more detailed information about gait characteristic than the 

currently used actigraphy summaries.

Our future research will focus on more robust methodology for extraction of gait-parameters 

that can be implemented to data collected in free-living environment. This is motivated by 

high demand for objective and unbiased measures of human physical functions as well as 

growing number of available algorithms for unsupervised segmentation of walking bouts 

[30] [31].
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Highlights

• Two measures of stride variability based on raw accelerometry data are 

proposed.

• The sensitivity of the approach to accelerometer on-body placement is 

explored.

• Measures have a significant association with the gait speed and sit-to-stand 

test.
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Fig.1. 
Stages of strides synchronization process. Top panel – Fourier spectrum of gait acceleration 

signal. Red box marks frequency range corresponding to step-to-step frequency. Middle 

panel – Time view of gait acceleration signal (black line) and signal after filtration (red line). 

Bottom panel - synchronized stride profiles (gray lines) and resulting average stride profile 

(green line).
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Figure.2. 
Exemplary stride profiles for three participants and three sensor locations. Gray lines 

correspond to registered stride profiles. Color lines represent averaged stride profiles. Red – 

hip, green – left wrist, blue – right wrist.
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Fig.3. 
Pair plots displaying proposed measures against each other with red identity lines. Panels 

below diagonals return Spearman’s rank correlation coefficients.
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Table 1

Means and standard deviations (in brackets) of calculated values

Hip Left Wrist Right Wrist

VMC [g] 0.267 (0.093) 0.245 (0.138) 0.257 (0.143)

AD [g] 0.086 (0.029) 0.112 (0.051) 0.114 (0.053)

Cadence [steps/s] 2.049 (0.181) 2.049(0.182) 2.047 (0.183)

PD [s] 0.020 (0.009) 0.039 (0.029) 0.046 (0.035)
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Table 2

Regression coefficients, standard errors and p-values (in brackets) for linear regression fit using proposed 

values. Shaded fields mark values above significance levels.

Hip VMC [g] AD [g] Cadence
[steps/s]

PD [s]

Chr5s [1/s] 0.73, 0.140
(<0.001)

1.54, 0.432
(<0.001)

0.16, 0.075
(0.043)

−1.20, 1.585
(0.450)

Pace6m [m/s] −5.15, 1.334
(<0.001)

−10.20, 4.001
(0.014)

−1.35, 0.625
(0.036)

20.00, 13.089
(0.134)

Left wrist VMC [g] AD [g] Cadence [steps/s] PD [s]

Chr5s [1/s] 0.31, 0.096
(0.003)

0.77, 0.261
(0.005)

0.13, 0.075
(0.097)

0.43, 0.450
(0.345)

Pace6m [m/s] −2.01, 0.880
(0.027)

−2.47, 2.478
(0.325)

−1.24, 0.630
(0.055)

1.12, 3.932
(0.777)

Right wrist VMC [g] AD [g] Cadence [steps/s] PD [s]

Chr5s [1/s] 0.25, 0.098
(0.015)

0.85, 0.242
(0.001)

0.15, 0.076
(0.058)

0.65, 0.454
(0.155)

Pace6m [m/s] −1.95, 0.868
(0.030)

−2.66, 2.371
(0.268)

−1.37, 0.621
(0.032)

0.57, 3.496
(0.869)
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