248 research outputs found

    Was messen Fragen zur Bewertung neuer Technologien? Semantisierungseffekte bei der Messung von bilanzierenden Einstellungen zu Bio- und Gentechnologien

    Full text link
    Im Rahmen eines kognitiven Theoriemodells von Technikeinstellungen werden verschiedene konzeptionelle und meßpraktische Folgerungen diskutiert, die sich aus der empirischen Erhebung von bilanzierenden Einstellungen gegenüber neuen Technologien ergeben. Dazu wird im vorliegenden Beitrag am Beispiel von Meßergebnissen des Euro-Barometers 1993 über die bilanzierende Bewertung neuer Bio- und Gentechnologien ein Semantisierungseffekt in der Technikbewertung der deutschen Bevölkerung nachgewiesen, der von der Bezeichnung des jeweiligen Einstellungsobjektes als 'Biotechnologie' oder 'Gentechnologie' ausgelöst wird und nur bei bilanzierenden jedoch nicht bei anwendungsspezifischen (und gleichzeitig generalisierenden) Technikbewertungen zu beobachten ist. Die methodologische Reflexion der Studie zeigt, daß bilanzierende Technikeinstellungen kein empirie-fremdes Konstrukt sind, sondern als wichtiges Deutungsmuster die Wahrnehmung neuer Technologien durch die Bevölkerung selbst beeinflussen. (ICE2

    Разработка методики оптимизации данных для неразрушающего контроля прочности бетона по параметрам электрического отклика на ударное воздействие

    Get PDF
    The article presents the results of investigation to improve the method of non-destructive testing of concrete strength by the parameters of electric response to impact excitation. The Electric response parameters of concrete samples with the same composition in size 100x100x100mm were studied. It is shown that the use of linear filtering procedure reduces the variance of diagnostic electric parameter to determine the strength of concrete

    Transcriptomic characterisation and genomic glimpse into the toxigenic dinoflagellate Azadinium spinosum, with emphasis on polykeitde synthase genes

    Get PDF
    Background: Unicellular dinoflagellates are an important group of primary producers within the marine plankton community. Many of these species are capable of forming harmful algae blooms (HABs) and of producing potent phycotoxins, thereby causing deleterious impacts on their environment and posing a threat to human health. The recently discovered toxigenic dinoflagellate Azadinium spinosum is known to produce azaspiracid toxins. These toxins are most likely produced by polyketide synthases (PKS). Recently, PKS I-like transcripts have been identified in a number of dinoflagellate species. Despite the global distribution of A. spinosum, little is known about molecular features. In this study, we investigate the genomic and transcriptomic features of A. spinosum with a focus on polyketide synthesis and PKS evolution. Results: We identify orphan and homologous genes by comparing the transcriptome data of A. spinosum with a diverse set of 18 other dinoflagellates, five further species out of the Rhizaria Alveolate Stramelopile (RAS)-group, and one representative from the Plantae. The number of orphan genes in the analysed dinoflagellate species averaged 27%. In contrast, within the A. spinosum transcriptome, we discovered 12,661 orphan transcripts (18%). The dinoflagellates toxins known as azaspiracids (AZAs) are structurally polyethers; we therefore analyse the transcriptome of A. spinosum with respect to polyketide synthases (PKSs), the primary biosynthetic enzymes in polyketide synthesis.We find all the genes thought to be potentially essential for polyketide toxin synthesis to be expressed in A. spinosum,whose PKS transcripts fall into the dinoflagellate sub-clade in PKS evolution. Conclusions: Overall, we demonstrate that the number of orphan genes in the A. spinosum genome is relatively small compared to other dinoflagellate species. In addition, all PKS domains needed to produce the azaspiracid carbon backbone are present in A. spinosum. Our study underscores the extraordinary evolution of such gene clusters and, in particular, supports the proposed structural and functional paradigm for PKS Type I genes in dinoflagellates

    Transcriptomic characterisation and genomic glimps into the toxigenic dinoflagellate Azadinium spinosum, with emphasis on polykeitde synthase genes

    Get PDF
    BACKGROUND: Unicellular dinoflagellates are an important group of primary producers within the marine plankton community. Many of these species are capable of forming harmful algae blooms (HABs) and of producing potent phycotoxins, thereby causing deleterious impacts on their environment and posing a threat to human health. The recently discovered toxigenic dinoflagellate Azadinium spinosum is known to produce azaspiracid toxins. These toxins are most likely produced by polyketide synthases (PKS). Recently, PKS I-like transcripts have been identified in a number of dinoflagellate species. Despite the global distribution of A. spinosum, little is known about molecular features. In this study, we investigate the genomic and transcriptomic features of A. spinosum with a focus on polyketide synthesis and PKS evolution. RESULTS: We identify orphan and homologous genes by comparing the transcriptome data of A. spinosum with a diverse set of 18 other dinoflagellates, five further species out of the Rhizaria Alveolate Stramelopile (RAS)-group, and one representative from the Plantae. The number of orphan genes in the analysed dinoflagellate species averaged 27%. In contrast, within the A. spinosum transcriptome, we discovered 12,661 orphan transcripts (18%). The dinoflagellates toxins known as azaspiracids (AZAs) are structurally polyethers; we therefore analyse the transcriptome of A. spinosum with respect to polyketide synthases (PKSs), the primary biosynthetic enzymes in polyketide synthesis. We find all the genes thought to be potentially essential for polyketide toxin synthesis to be expressed in A. spinosum, whose PKS transcripts fall into the dinoflagellate sub-clade in PKS evolution. CONCLUSIONS: Overall, we demonstrate that the number of orphan genes in the A. spinosum genome is relatively small compared to other dinoflagellate species. In addition, all PKS domains needed to produce the azaspiracid carbon backbone are present in A. spinosum. Our study underscores the extraordinary evolution of such gene clusters and, in particular, supports the proposed structural and functional paradigm for PKS Type I genes in dinoflagellates

    Materials science at Swiss universities of applied sciences

    Get PDF
    Copyright ©Swiss Chemical Society: CHIMIA, Volume 73, Numbers 7-8, August 2019, pp. 645-655(11)In the Swiss Universities of Applied Sciences, several research institutes are involved in Materials Science, with different approaches and applications fields. A few examples of recent projects from different groups of the University of Applied Sciences and Arts Western Switzerland (HES-SO), the Zurich University of Applied Sciences (ZHAW) and the University of Applied Sciences and Arts Northwestern Switzerland (FHNW) are given

    High‐Performance Monolayer MoS 2 Field‐Effect Transistors on Cyclic Olefin Copolymer‐Passivated SiO 2 Gate Dielectric

    Get PDF
    Abstract Trap states of the semiconductor/gate dielectric interface give rise to a pronounced subthreshold behavior in field‐effect transistors (FETs) diminishing and masking intrinsic properties of 2D materials. To reduce the well‐known detrimental effect of SiO 2 surface traps, this work spin‐coated an ultrathin (≈5 nm) cyclic olefin copolymer (COC) layer onto the oxide and this hydrophobic layer acts as a surface passivator. The chemical resistance of COC allows to fabricate monolayer MoS 2 FETs on SiO 2 by standard cleanroom processes. This way, the interface trap density is lowered and stabilized almost fivefold, to around 5 × 10 11 cm −2 eV −1 , which enables low‐voltage FETs even on 300 nm thick SiO 2 . In addition to this superior electrical performance, the photoresponsivity of the MoS 2 devices on passivated oxide is also enhanced by four orders of magnitude compared to nonpassivated MoS 2 FETs. Under these conditions, negative photoconductivity and a photoresponsivity of 3 × 10 7 A W −1 is observed which is a new highest value for MoS 2 . These findings indicate that the ultrathin COC passivation of the gate dielectric enables to probe exciting properties of the atomically thin 2D semiconductor, rather than interface trap dominated effects.High‐performance monolayer MoS 2 ‐based electronic and optoelectronic devices are fabricated on SiO 2 gate dielectric passivated with cyclic olefin copolymer. The passivation eliminates the interaction with interface trap states which are detrimental for the electronic and optoelectronic performance of the devices. imag

    The mitochondrial protein Bak is pivotal for gliotoxin-induced apoptosis and a critical host factor of Aspergillus fumigatus virulence in mice

    Get PDF
    Aspergillus fumigatus infections cause high levels of morbidity and mortality in immunocompromised patients. Gliotoxin (GT), a secondary metabolite, is cytotoxic for mammalian cells, but the molecular basis and biological relevance of this toxicity remain speculative. We show that GT induces apoptotic cell death by activating the proapoptotic Bcl-2 family member Bak, but not Bax, to elicit the generation of reactive oxygen species, the mitochondrial release of apoptogenic factors, and caspase-3 activation. Activation of Bak by GT is direct, as GT triggers in vitro a dose-dependent release of cytochrome c from purified mitochondria isolated from wild-type and Bax- but not Bak-deficient cells. Resistance to A. fumigatus of mice lacking Bak compared to wild-type mice demonstrates the in vivo relevance of this GT-induced apoptotic pathway involving Bak and suggests a correlation between GT production and virulence. The elucidation of the molecular basis opens new strategies for the development of therapeutic regimens to combat A. fumigatus and related fungal infections

    Living in a cloud: intraspecific facilitation by allelochemical mediated grazing protection 1 2

    Get PDF
    Abstract 23 Dinoflagellates are a major cause of harmful algal blooms, with consequences for coastal marine 24 ecosystem functioning and services. Alexandrium tamarense is one of the most abundant and 25 widespread toxigenic species in the temperate northern and southern hemisphere, and produces 26 paralytic shellfish poisoning toxins as well as lytic allelochemical substances. These bioactive 27 compounds may support the success of A. tamarense and its ability to form blooms. Here we 28 investigate grazing of highly (Alex2) and moderately (Alex4) allelochemical active A. tamarense 29 strains and a non-allelochemical active conspecific (Alex5) by the heterotrophic dinoflagellate 30 Polykrikos kofoidii in monoclonal and mixed experimental set-ups. While Alex4 and particularly 31 Alex5 were strongly grazed by P. kofoidii in monoclonal set-ups, both strains did grow well in 32 the mixed assemblages (Alex4+Alex5 and Alex2+Alex5). Hence, the allelochemical active 33 strains facilitate the non-active strain by protecting the population against grazing. This 34 allelochemical mediated facilitation resembles associational resistance observed in various 35 macroalgal and plant communities. Occurring intraspecifically it may partly explain the high 36 genotypic and phenotypic diversity of Alexandrium populations. It is furthermore conceivable 37 that these diverse populations comprise multiple cooperative traits that may support mutual 38 intraspecific facilitation, which in turn will promote the success of this notorious harmful algal 39 bloom species. 40 4

    Morphological, molecular, and toxin analysis of field populations of Alexandrium genus from the Argentine Sea

    Get PDF
    In the Argentine Sea, blooms of toxigenic dinoflagellates of the Alexandrium tamarense species complex have led to fish and bird mortalities and human deaths as a consequence of paralytic shellfish poisoning (PSP). Yet little is known about the occurrence of other toxigenic species of the genus Alexandrium, or of their toxin composition beyond coastal waters. The distribution of Alexandrium species and related toxins in the Argentine Sea was determined by sampling surface waters on an oceanographic expedition during austral spring from ~39°S to 48°S. Light microscope and SEM analysis for species identification and enumeration was supplemented by confirmatory PCR analysis from field samples. The most frequent Alexandrium taxon identified by microscopy corresponded to the classical description of A. tamarense. Only weak signals of Group I from the A. tamarense species complex were detected by PCR of bulk field samples, but phylogenetic reconstruction of rDNA sequences from single cells from one station assigned them to ribotype Group I (Alexandrium catenella). PCR probes for Alexandrium minutum and Alexandrium ostenfeldii yielded a positive signal, although A. minutum morphology did not completely match the classical description. Analysis of PSP toxin composition of plankton samples revealed toxin profiles dominated by gonyautoxins (GTX1/4). The main toxic cyclic imine detected was 13-desMe-spirolide C and this supported the association with A. ostenfeldii in the field. This study represents the first integrated molecular, morphological and toxinological analysis of field populations of the genus Alexandrium in the Argentine Sea
    corecore