255 research outputs found
Measuring health-related quality of life in young adolescents: Reliability and validity in the Norwegian version of the Pediatric Quality of Life Inventoryβ’ 4.0 (PedsQL) generic core scales
BACKGROUND: Health-Related Quality of Life (HRQOL) studies concerning children and adolescents are a growing field of research. The Pediatric Quality of Life Inventory (PedsQLβ’) is considered as a promising HRQOL instrument with the availability of age appropriate versions and parallel forms for both child and parents. The purpose of the current study was to evaluate the psychometric properties of the Norwegian translation of the Pediatric Quality of Life Inventory (PedsQLβ’) 4.0 generic core scale in a sample of healthy young adolescents. METHODS: A cross-sectional study of 425 healthy young adolescents and 237 of their caregivers participating as a proxy. Reliability was assessed by Cronbach's alpha. Construct validity was assessed using exploratory factor analysis and by exploring the intercorrelations between and among the four PedsQL subscales for adolescents and their parents. RESULTS: All the self-report scales and proxy-report scales showed satisfactory reliability with Cronbach's alpha varying between 0.77 and 0.88. Factor analysis showed results comparable with the original version, except for the Physical Health scale. On average, monotrait-multimethod correlations were higher than multitrait-multimethod correlations. Sex differences were noted on the emotional functioning subscale, girls reported lower HRQOL than boys. CONCLUSION: The Norwegian PedsQL is a valid and reliable generic pediatric health-related Quality of Life measurement that can be recommended for self-reports and proxy-reports for children in the age groups ranging from 13β15 years
Providing education on evidence-based practice improved knowledge but did not change behaviour: a before and after study
BACKGROUND: Many health professionals lack the skills to find and appraise published research. This lack of skills and associated knowledge needs to be addressed, and practice habits need to change, for evidence-based practice to occur. The aim of this before and after study was to evaluate the effect of a multifaceted intervention on the knowledge, skills, attitudes and behaviour of allied health professionals. METHODS: 114 self-selected occupational therapists were recruited. The intervention included a 2-day workshop combined with outreach support for eight months. Support involved email and telephone contact and a workplace visit. Measures were collected at baseline, post-workshop, and eight months later. The primary outcome was knowledge, measured using the Adapted Fresno Test of Evidence-Based Practice (total score 0 to 156). Secondary outcomes were attitude to evidence-based practice (% reporting improved skills and confidence; % reporting barriers), and behaviour measured using an activity diary (% engaging/not engaging in search and appraisal activities), and assignment completion. RESULTS: Post-workshop, there were significant gains in knowledge which were maintained at follow-up. The mean difference in the Adapted Fresno Test total score was 20.6 points (95% CI, 15.6 to 25.5). The change from post-workshop to follow-up was small and non-significant (mean difference 1.2 points, 95% CI, -6.0 to 8.5). Fewer participants reported lack of searching and appraisal skills as barriers to evidence-based practice over time (searching = 61%, 53%, 24%; appraisal 60%, 65%, 41%). These differences were statistically significant (p = 0.0001 and 0.010 respectively). Behaviour changed little. Pre-workshop, 6% engaged in critical appraisal increasing to 18% post-workshop and 18% at follow-up. Nearly two thirds (60%) were not reading any research literature at follow-up. Twenty-three participants (20.2%) completed their assignment. CONCLUSION: Evidence-based practice skills and knowledge improved markedly with a targetted education intervention and outreach support. However, changes in behaviour were small, based on the frequency of searching and appraisal activities. Allied health educators should focus more on post-workshop skill development, particularly appraisal, and help learners to establish new routines and priorities around evidence-based practice. Learners also need to know that behaviour change of this nature may take months, even years
Resistance to HSP90 inhibition involving loss of MCL1 addiction
YesInhibition of the chaperone heat-shock protein 90 (HSP90) induces apoptosis, and it is a promising anti-cancer strategy. The mechanisms underpinning apoptosis activation following HSP90 inhibition and how they are modified during acquired drug resistance are unknown. We show for the first time that, to induce apoptosis, HSP90 inhibition requires the cooperation of multi BH3-only proteins (BID, BIK, PUMA) and the reciprocal suppression of the pro-survival BCL-2 family member MCL1, which occurs via inhibition of STAT5A. A subset of tumour cell lines exhibit dependence on MCL1 expression for survival and this dependence is also associated with tumour response to HSP90 inhibition. In the acquired resistance setting, MCL1 suppression in response to HSP90 inhibitors is maintained; however, a switch in MCL1 dependence occurs. This can be exploited by the BH3 peptidomimetic ABT737, through non-BCL-2-dependent synthetic lethality
Mycobacterium tuberculosis WhiB3 Maintains Redox Homeostasis by Regulating Virulence Lipid Anabolism to Modulate Macrophage Response
The metabolic events associated with maintaining redox homeostasis in Mycobacterium tuberculosis (Mtb) during infection are poorly understood. Here, we discovered a novel redox switching mechanism by which Mtb WhiB3 under defined oxidizing and reducing conditions differentially modulates the assimilation of propionate into the complex virulence polyketides polyacyltrehaloses (PAT), sulfolipids (SL-1), phthiocerol dimycocerosates (PDIM), and the storage lipid triacylglycerol (TAG) that is under control of the DosR/S/T dormancy system. We developed an in vivo radio-labeling technique and demonstrated for the first time the lipid profile changes of Mtb residing in macrophages, and identified WhiB3 as a physiological regulator of virulence lipid anabolism. Importantly, MtbΞwhiB3 shows enhanced growth on medium containing toxic levels of propionate, thereby implicating WhiB3 in detoxifying excess propionate. Strikingly, the accumulation of reducing equivalents in MtbΞwhiB3 isolated from macrophages suggests that WhiB3 maintains intracellular redox homeostasis upon infection, and that intrabacterial lipid anabolism functions as a reductant sink. MtbΞwhiB3 infected macrophages produce higher levels of pro- and anti-inflammatory cytokines, indicating that WhiB3-mediated regulation of lipids is required for controlling the innate immune response. Lastly, WhiB3 binds to pks2 and pks3 promoter DNA independent of the presence or redox state of its [4Fe-4S] cluster. Interestingly, reduction of the apo-WhiB3 Cys thiols abolished DNA binding, whereas oxidation stimulated DNA binding. These results confirmed that WhiB3 DNA binding is reversibly regulated by a thiol-disulfide redox switch. These results introduce a new paradigmatic mechanism that describes how WhiB3 facilitates metabolic switching to fatty acids by regulating Mtb lipid anabolism in response to oxido-reductive stress associated with infection, for maintaining redox balance. The link between the WhiB3 virulence pathway and DosR/S/T signaling pathway conceptually advances our understanding of the metabolic adaptation and redox-based signaling events exploited by Mtb to maintain long-term persistence
Pathogen-Mediated Proteolysis of the Cell Death Regulator RIPK1 and the Host Defense Modulator RIPK2 in Human Aortic Endothelial Cells
Porphyromonas gingivalis is the primary etiologic agent of periodontal disease that is associated with other human chronic inflammatory diseases, including atherosclerosis. The ability of P. gingivalis to invade and persist within human aortic endothelial cells (HAEC) has been postulated to contribute to a low to moderate chronic state of inflammation, although how this is specifically achieved has not been well defined. In this study, we demonstrate that P. gingivalis infection of HAEC resulted in the rapid cleavage of receptor interacting protein 1 (RIPK1), a mediator of tumor necrosis factor (TNF) receptor-1 (TNF-R1)-induced cell activation or death, and RIPK2, a key mediator of both innate immune signaling and adaptive immunity. The cleavage of RIPK1 or RIPK2 was not observed in cells treated with apoptotic stimuli, or cells stimulated with agonists to TNF-R1, nucleotide oligomerization domain receptor 1(NOD1), NOD2, Toll-like receptor 2 (TLR2) or TLR4. P. gingivalis-induced cleavage of RIPK1 and RIPK2 was inhibited in the presence of a lysine-specific gingipain (Kgp) inhibitor. RIPK1 and RIPK2 cleavage was not observed in HAEC treated with an isogenic mutant deficient in the lysine-specific gingipain, confirming a role for Kgp in the cleavage of RIPK1 and RIPK2. Similar proteolysis of poly (ADP-ribose) polymerase (PARP) was observed. We also demonstrated direct proteolysis of RIPK2 by P. gingivalis in a cell-free system which was abrogated in the presence of a Kgp-specific protease inhibitor. Our studies thus reveal an important role for pathogen-mediated modification of cellular kinases as a potential strategy for bacterial persistence within target host cells, which is associated with low-grade chronic inflammation, a hallmark of pathogen-mediated chronic inflammatory disorders
Drosophila S2 Cells Are Non-Permissive for Vaccinia Virus DNA Replication Following Entry via Low pH-Dependent Endocytosis and Early Transcription
Vaccinia virus (VACV), a member of the chordopox subfamily of the Poxviridae, abortively infects insect cells. We have investigated VACV infection of Drosophila S2 cells, which are useful for protein expression and genome-wide RNAi screening. Biochemical and electron microscopic analyses indicated that VACV entry into Drosophila S2 cells depended on the VACV multiprotein entry-fusion complex but appeared to occur exclusively by a low pH-dependent endocytic mechanism, in contrast to both neutral and low pH entry pathways used in mammalian cells. Deep RNA sequencing revealed that the entire VACV early transcriptome, comprising 118 open reading frames, was robustly expressed but neither intermediate nor late mRNAs were made. Nor was viral late protein synthesis or inhibition of host protein synthesis detected by pulse-labeling with radioactive amino acids. Some reduction in viral early proteins was noted by Western blotting. Nevertheless, synthesis of the multitude of early proteins needed for intermediate gene expression was demonstrated by transfection of a plasmid containing a reporter gene regulated by an intermediate promoter. In addition, expression of a reporter gene with a late promoter was achieved by cotransfection of intermediate genes encoding the late transcription factors. The requirement for transfection of DNA templates for intermediate and late gene expression indicated a defect in viral genome replication in VACV-infected S2 cells, which was confirmed by direct analysis. Furthermore, VACV-infected S2 cells did not support the replication of a transfected plasmid, which occurs in mammalian cells and is dependent on all known viral replication proteins, indicating a primary restriction of DNA synthesis
- β¦