45 research outputs found

    Structural basis for the dual RNA-recognition modes of human Tra2-beta RRM

    Get PDF
    Human Transformer2-beta (hTra2-beta) is an important member of the serine/arginine-rich protein family, and contains one RNA recognition motif (RRM). It controls the alternative splicing of several pre-mRNAs, including those of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Accordingly, the RRM of hTra2-beta specifically binds to two types of RNA sequences [the CAA and (GAA)2 sequences]. We determined the solution structure of the hTra2-beta RRM (spanning residues Asn110–Thr201), which not only has a canonical RRM fold, but also an unusual alignment of the aromatic amino acids on the beta-sheet surface. We then solved the complex structure of the hTra2-beta RRM with the (GAA)2 sequence, and found that the AGAA tetra-nucleotide was specifically recognized through hydrogen-bond formation with several amino acids on the N- and C-terminal extensions, as well as stacking interactions mediated by the unusually aligned aromatic rings on the beta-sheet surface. Further NMR experiments revealed that the hTra2-beta RRM recognizes the CAA sequence when it is integrated in the stem-loop structure. This study indicates that the hTra2-beta RRM recognizes two types of RNA sequences in different RNA binding modes

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    Crystal structure of penicillin binding protein 4 (dacB) from Escherichia coli, both in the native form and covalently linked to various antibiotics

    No full text
    The crystal structure of penicillin binding protein 4 (PBP4) from Escherichia coli, which has both DD-endopeptidase and DD-carboxypeptidase activity, is presented. PBP4 is one of 12 penicillin binding proteins in E. coli involved in the synthesis and maintenance of the cell wall. The model contains a penicillin binding domain similar to known structures, but includes a large insertion which folds into domains with unique folds. The structures of the protein covalently attached to five different antibiotics presented here show the active site residues are unmoved compared to the apoprotein, but nearby surface loops and helices are displaced in some cases. The altered geometry of conserved active site residues compared with those of other PBPs suggests a possible cause for the slow deacylation rate of PBP4

    Structure and mechanism of HpcG, a hydratase in the homoprotocatechuate degradation pathway of Escherichia coli

    No full text
    HpcG catalyses the hydration of a carbon-carbon double bond without the aid of any cofactor other than a simple divalent metal ion such as Mg2+. Since the substrate has a nearby carbonyl group, it is believed that it first isomerises to form a pair of conjugated double bonds in the enol tautomer before Michael addition of water. Previous chemical studies of the reaction, of the mechanism. The substrate itself is unstable, preventing co-crystallisation or soaking of crystals, but oxalate is a strong competitive inhibitor. We have solved the crystal structure of the protein in the apo form, and with magnesium and oxalate bound. Modelling substrate into the active site suggests the attacking water molecule is not part of the metal coordination shell, in contrast to a previous proposal. Our model suggests that geometrically strained cis isomer intermediates do not lie on the reaction pathway, and that separate groups are involved in the isomerisation and hydration steps. (c) 2007 Elsevier Ltd. All rights reserved

    Computational design of a self-assembling symmetrical ÎČ-propeller protein

    No full text
    International audienceThe modular structure of many protein families, such as ÎČ-propeller proteins, strongly implies that duplication played an important role in their evolution, leading to highly symmetrical intermediate forms. Previous attempts to create perfectly symmetrical propeller proteins have failed, however. We have therefore developed a new and rapid computational approach to design such proteins. As a test case, we have created a sixfold symmetrical ÎČ-propeller protein and experimentally validated the structure using X-ray crystallography. Each blade consists of 42 residues. Proteins carrying 2-10 identical blades were also expressed and purified. Two or three tandem blades assemble to recreate the highly stable sixfold symmetrical architecture, consistent with the duplication and fusion theory. The other proteins produce different monodisperse complexes, up to 42 blades (180 kDa) in size, which self-assemble according to simple symmetry rules. Our procedure is suitable for creating nano-building blocks from different protein templates of desired symmetry

    Self-Assembling Nano-Architectures Created from a Protein Nano-Building Block Using an Intermolecularly Folded Dimeric <i>de Novo</i> Protein

    No full text
    The design of novel proteins that self-assemble into supramolecular complexes is an important step in the development of synthetic biology and nanotechnology. Recently, we described the three-dimensional structure of WA20, a <i>de novo</i> protein that forms an intermolecularly folded dimeric 4-helix bundle (PDB code 3VJF). To harness the unusual intertwined structure of WA20 for the self-assembly of supramolecular nanostructures, we created a protein nanobuilding block (PN-Block), called WA20-foldon, by fusing the dimeric structure of WA20 to the trimeric foldon domain of fibritin from bacteriophage T4. The WA20-foldon fusion protein was expressed in the soluble fraction in Escherichia coli, purified, and shown to form several homooligomeric forms. The stable oligomeric forms were further purified and characterized by a range of biophysical techniques. Size exclusion chromatography, multiangle light scattering, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS) analyses indicate that the small (S form), middle (M form), and large (L form) forms of the WA20-foldon oligomers exist as hexamer (6-mer), dodecamer (12-mer), and octadecamer (18-mer), respectively. These findings suggest that the oligomers in multiples of 6-mer are stably formed by fusing the interdigitated dimer of WA20 with the trimer of foldon domain. Pair-distance distribution functions obtained from the Fourier inversion of the SAXS data suggest that the S and M forms have barrel- and tetrahedron-like shapes, respectively. These results demonstrate that the <i>de novo</i> WA20-foldon is an effective building block for the creation of self-assembling artificial nanoarchitectures

    Crystal Structure of Human Importin-α1 (Rch1), Revealing a Potential Autoinhibition Mode Involving Homodimerization

    No full text
    <div><p>In this study, we determined the crystal structure of N-terminal importin-ÎČ-binding domain (IBB)-truncated human importin-α1 (ΔIBB-h-importin-α1) at 2.63 Å resolution. The crystal structure of ΔIBB-h-importin-α1 reveals a novel closed homodimer. The homodimer exists in an autoinhibited state in which both the major and minor nuclear localization signal (NLS) binding sites are completely buried in the homodimerization interface, an arrangement that restricts NLS binding. Analytical ultracentrifugation studies revealed that ΔIBB-h-importin-α1 is in equilibrium between monomers and dimers and that NLS peptides shifted the equilibrium toward the monomer side. This finding suggests that the NLS binding sites are also involved in the dimer interface in solution. These results show that when the IBB domain dissociates from the internal NLS binding sites, e.g., by binding to importin-ÎČ, homodimerization possibly occurs as an autoinhibition state.</p></div
    corecore