2,431 research outputs found

    Relationship between lower limb neuromuscular performanceand bone strength in postmenopausal women with mild knee osteoarthritis

    Full text link
    Objectives: To investigate whether neuromuscular performance predicts lower limb bone strength in different lower limb sites in postmenopausal women with mild knee osteoarthritis (OA). Methods: Neuromuscular performance of 139 volunteer women aged 50-68 with mild knee OA was measured using maximal counter movement jump test, isometric knee flexion and extension force and figure-of-eight-running test. Femoral neck section modulus (Z, mm3) was determined by data obtained from dualenergy X-ray absorptiometry. Data obtained using peripheral quantitative computed tomography was used to asses distal tibia compressive (BSId, g2/cm4) and tibial mid-shaft bending (SSImaxmid, mm3) strength indices. Results: After adjustment for height, weight and age, counter movement jump peak power production was the strongest independent predictor for Z (β=0.44; p<0.001) and for BSId (β=0.32; p=0.003). This was also true in concentric net impulse for Z (β=0.37; p=0.001) and for BSId (β=0.40; p<0.001). Additionally, knee extension force (β=0.30; p<0.001) and figure-of-eight-running test (β= -0.32; p<0.001) were among strongest independent predictors for BSId after adjustments. For SSImaxmid, concentric net impulse (β=0.33; p=0.002) remained as the strongest independent predictor after adjustments. Conclusions: Neuromuscular performance in postmenopausal women with mild knee OA predicted lower limb bone strength in every measured skeletal site

    Information-Theoretic Secret-Key Agreement: The Asymptotically Tight Relation Between the Secret-Key Rate and the Channel Quality Ratio

    Get PDF
    Information-theoretically secure secret-key agreement between two parties Alice and Bob is a well-studied problem that is provably impossible in a plain model with public (authenticated) communication, but is known to be possible in a model where the parties also have access to some correlated randomness. One particular type of such correlated randomness is the so-called satellite setting, where a source of uniform random bits (e.g., sent by a satellite) is received by the parties and the adversary Eve over inherently noisy channels. The antenna size determines the error probability, and the antenna is the adversary\u27s limiting resource much as computing power is the limiting resource in traditional complexity-based security. The natural assumption about the adversary is that her antenna is at most QQ times larger than both Alice\u27s and Bob\u27s antenna, where, to be realistic, QQ can be very large. The goal of this paper is to characterize the secret-key rate per transmitted bit in terms of QQ. Traditional results in this so-called satellite setting are phrased in terms of the error probabilities ϵA\epsilon_A, ϵB\epsilon_B, and ϵE\epsilon_E, of the binary symmetric channels through which the parties receive the bits and, quite surprisingly, the secret-key rate has been shown to be strictly positive unless Eve\u27s channel is perfect (ϵE=0\epsilon_E=0) or either Alice\u27s or Bob\u27s channel output is independent of the transmitted bit (i.e., ϵA=0.5\epsilon_A=0.5 or ϵB=0.5\epsilon_B=0.5). However, the best proven lower bound, if interpreted in terms of the channel quality ratio QQ, is only exponentially small in QQ. The main result of this paper is that the secret-key rate decreases asymptotically only like 1/Q21/Q^2 if the per-bit signal energy, affecting the quality of all channels, is treated as a system parameter that can be optimized. Moreover, this bound is tight if Alice and Bob have the same antenna sizes. Motivated by considering a fixed sending signal power, in which case the per-bit energy is inversely proportional to the bit-rate, we also propose a definition of the secret-key rate per second (rather than per transmitted bit) and prove that it decreases asymptotically only like 1/Q1/Q

    The role of receptor MAS in microglia-driven retinal vascular development

    Get PDF
    Objective: The receptor MAS, encoded by Mas1, is expressed in microglia and its activation has been linked to anti-inflammatory actions. However, microglia are involved in several different processes in the central nervous system, including the promotion of angiogenesis. We therefore hypothesized that the receptor MAS also plays a role in angiogenesis via microglia. Approach and results: To assess the role of MAS on vascular network development, flat-mounted retinas from 3-day-old wild-type (WT) and Mas1−/− mice were subjected to Isolectin B4 staining. The progression of the vascular front was reduced (− 24%, p < 0.0001) and vascular density decreased (− 38%, p < 0.001) in Mas1−/− compared to WT mice with no change in the junction density. The number of filopodia and filopodia bursts were decreased in Mas1−/− mice at the vascular front (− 21%, p < 0.05; − 29%, p < 0.0001, respectively). This was associated with a decreased number of vascular loops and decreased microglial density at the vascular front in Mas1−/− mice (-32%, p < 0.001; − 26%, p < 0.05, respectively). As the front of the developing vasculature is characterized by reduced oxygen levels, we determined the expression of Mas1 following hypoxia in primary microglia from 3-day-old WT mice. Hypoxia induced a 14-fold increase of Mas1 mRNA expression (p < 0.01). Moreover, stimulation of primary microglia with a MAS agonist induced expression of Notch1 (+ 57%, p < 0.05), Dll4 (+ 220%, p  < 0.001) and Jag1 (+ 137%, p < 0.001), genes previously described to mediate microglia/endothelial cell interaction during angiogenesis. Conclusions: Our study demonstrates that the activation of MAS is important for microglia recruitment and vascular growth in the developing retina

    Interpreting population reach of a large, successful physical activity trial delivered through primary care.

    Get PDF
    Abstract Background Failure to include socio-economically deprived or ethnic minority groups in physical activity (PA) trials may limit representativeness and could lead to implementation of interventions that then increase health inequalities. Randomised intervention trials often have low recruitment rates and rarely assess recruitment bias. A previous trial by the same team using similar methods recruited 30% of the eligible population but was in an affluent setting with few non-white residents and was limited to those over 60 years of age. Methods PACE-UP is a large, effective, population-based walking trial in inactive 45-75 year-olds that recruited through seven London general practices. Anonymised practice demographic data were available for all those invited, enabling investigation of inequalities in trial recruitment. Non-participants were invited to complete a questionnaire. Results From 10,927 postal invitations, 1150 (10.5%) completed baseline assessment. Participation rate ratios (95% CI), adjusted for age and gender as appropriate, were lower in men 0.59 (0.52, 0.67) than women, in those under 55 compared with those ≥65, 0.60 (0.51, 0.71), in the most deprived quintile compared with the least deprived 0.52 (0.39, 0.70) and in Asian individuals compared with whites 0.62 (0.50, 0.76). Black individuals were equally likely to participate as white individuals. Participation was also associated with having a co-morbidity or some degree of health limitation. The most common reasons for non-participation were considering themselves as being too active or lack of time. Conclusions Conducting the trial in this diverse setting reduced overall response, with lower response in socio-economically deprived and Asian sub-groups. Trials with greater reach are likely to be more expensive in terms of recruitment and gains in generalizability need to be balanced with greater costs. Differential uptake of successful trial interventions may increase inequalities in PA levels and should be monitored

    Explosive Nucleosynthesis: What we learned and what we still do not understand

    Full text link
    This review touches on historical aspects, going back to the early days of nuclear astrophysics, initiated by B2^2FH and Cameron, discusses (i) the required nuclear input from reaction rates and decay properties up to the nuclear equation of state, continues (ii) with the tools to perform nucleosynthesis calculations and (iii) early parametrized nucleosynthesis studies, before (iv) reliable stellar models became available for the late stages of stellar evolution. It passes then through (v) explosive environments from core-collapse supernovae to explosive events in binary systems (including type Ia supernovae and compact binary mergers), and finally (vi) discusses the role of all these nucleosynthesis production sites in the evolution of galaxies. The focus is put on the comparison of early ideas and present, very recent, understanding.Comment: 11 pages, to appear in Springer Proceedings in Physics (Proc. of Intl. Conf. "Nuclei in the Cosmos XV", LNGS Assergi, Italy, June 2018

    Secret Sharing over Fast-Fading MIMO Wiretap Channels

    Get PDF
    Secret sharing over the fast-fading MIMO wiretap channel is considered. A source and a destination try to share secret information over a fast-fading MIMO channel in the presence of a wiretapper who also makes channel observations that are different from but correlated to those made by the destination. An interactive authenticated unrestricted public channel is also available for use by the source and destination in the secret sharing process. This falls under the "channel-type model with wiretapper" considered by Ahlswede and Csiszar. A minor extension of their result (to continuous channel alphabets) is employed to evaluate the key capacity of the fast-fading MIMO wiretap channel. The effects of spatial dimensionality provided by the use of multiple antennas at the source, destination, and wiretapper are then investigated.Comment: Revision submitted to EURASIP Journal on Wireless Communications and Networking, Special Issue on Wireless Physical Layer Security, Sept. 2009. v.3: Fixes to proofs. Matthieu Bloch added as co-author for contributions to proof

    Strange Attractors in Dissipative Nambu Mechanics : Classical and Quantum Aspects

    Full text link
    We extend the framework of Nambu-Hamiltonian Mechanics to include dissipation in R3R^{3} phase space. We demonstrate that it accommodates the phase space dynamics of low dimensional dissipative systems such as the much studied Lorenz and R\"{o}ssler Strange attractors, as well as the more recent constructions of Chen and Leipnik-Newton. The rotational, volume preserving part of the flow preserves in time a family of two intersecting surfaces, the so called {\em Nambu Hamiltonians}. They foliate the entire phase space and are, in turn, deformed in time by Dissipation which represents their irrotational part of the flow. It is given by the gradient of a scalar function and is responsible for the emergence of the Strange Attractors. Based on our recent work on Quantum Nambu Mechanics, we provide an explicit quantization of the Lorenz attractor through the introduction of Non-commutative phase space coordinates as Hermitian N×N N \times N matrices in R3 R^{3}. They satisfy the commutation relations induced by one of the two Nambu Hamiltonians, the second one generating a unique time evolution. Dissipation is incorporated quantum mechanically in a self-consistent way having the correct classical limit without the introduction of external degrees of freedom. Due to its volume phase space contraction it violates the quantum commutation relations. We demonstrate that the Heisenberg-Nambu evolution equations for the Quantum Lorenz system give rise to an attracting ellipsoid in the 3N23 N^{2} dimensional phase space.Comment: 35 pages, 4 figures, LaTe
    corecore