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1. Introduction

The wiretap channel considered in the seminal paper [1] is
the first example that demonstrates the possibility of secure
communications at the physical layer. It is shown in [1]
that a source can transmit a message at a positive (secrecy)
rate to a destination in such a way that an eavesdropper
only gathers information at a negligible rate, when the
source-to-eavesdropper channel is a degraded version of the
source-to-destination channel, the source-to-eavesdropper
and source-to-destination channels will hereafter be referred
to as eavesdropper and destination channels, respectively. A
similar result for the Gaussian wiretap channel is provided in
[2]. The work in [3] further removes the degraded wiretap
channel restriction showing that positive secrecy capacity is
possible if the destination channel is “more capable” (“less
noisy” for a full extension of the rate region in [1]) than the
eavesdropper’s channel. Recently, there has been a flurry of
interest in extending these early results to more sophisticated
channel models, including fading wiretap channels, mul-
tiinput multi-output (MIMO) wiretap channels, multiple-
access wiretap channels, broadcast wiretap channels, and
relay wiretap channels. We do not attempt to provide a
comprehensive summary of all recent developments but
highlight only those results that are most relevant to the

present work. We refer interested readers to the introduction
and reference list of [4] for a concise and extensive overview
of recent works.

When the destination and eavesdropper channels experi-
ence independent fading, the strict requirement of having a
more capable destination channel for positive secrecy capac-
ity can be loosened. This is due to the simple observation
that the destination channel may be more capable than the
eavesdropper’s channel under some fading realizations, even
if the destination is not more capable than the eavesdropper
on average. Hence, if the channel state information (CSI) of
both the destination and eavesdropper channels is available
at the source, it is shown in [4, 5] that a positive secrecy
capacity can be achieved by means of appropriate power
control at the source. The key idea is to opportunistically
transmit only during those fading realizations for which
the destination channel is more capable [6]. For block-
ergodic fading, it is also shown in [5] (see also [7]) that a
positive secrecy capacity can be achieved with a variable-rate
transmission scheme without any eavesdropper CSI available
at the source.

When the source, destination, and eavesdropper have
multiple antennas, the resulting channel is known as a
MIMO wiretap channel (see [8–12]), which may also have
positive secrecy capacity. Since the MIMO wiretap channel
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is not degraded, the characterization of its secrecy capacity
is not straightforward. For instance, the secrecy capacity of
the MIMO wiretap channel is characterized in [9] as the
saddle point of a minimax problem, while an alternative
characterization based on a recent result for multiantenna
broadcast channels is provided in [11]. Interestingly all
characterizations point to the fact that the capacity achieving
scheme is one that transmits only in the directions in
which the destination channel is more capable than the
eavesdropper’s channel. Obviously, this is only possible when
the destination and eavesdropper CSI is available at the
source. It is shown in [9] that if the individual channels
from antennas to antennas suffer from independent Rayleigh
fading, and the respective ratios of the numbers of source
and destination antennas to that of eavesdropper antennas
are larger than certain fixed values, then the secrecy capacity
is positive with probability one when the numbers of source,
destination, and eavesdropper antennas become very large.

As discussed above, the availability of destination (and
eavesdropper) CSI at the source is an implicit requirement
for positive secrecy capacity in the fading and MIMO
wiretap channels. Thus, an authenticated feedback channel
is needed to send the CSI from the destination back to
the source. In [5, 7], this feedback channel is assumed to
be public, and hence the destination CSI is also available
to the eavesdropper. In addition, it is assumed that the
eavesdropper knows its own CSI. With the availability of a
feedback channel, if the objective of having the source send
secret information to the destination is relaxed to distilling
a secret key shared between the source and destination, it is
shown in [13] that a positive key rate is achievable when the
destination and eavesdropper channels are two conditionally
independent (given the source input symbols) memoryless
binary channels, even if the destination channel is not more
capable than the eavesdropper’s channel. This notion of
secret sharing is formalized in [14] based on the concept
of common randomness between the source and destination.
Assuming the availability of an interactive, authenticated
public channel with unlimited capacity between the source
and destination [14] suggests two different system models,
called the “source model with wiretapper” (SW) and the
“channel model with wiretapper” (CW). The CW model is
similar to the (discrete memoryless) wiretap channel model
that we have discussed before. The SW model differs in that
the random symbols observed at the source, destination, and
eavesdropper are realizations of a discrete memoryless source
with multiple components. Both SW and CW models have
been extended to the case of secret sharing among multiple
terminals, with the possibility of some terminals acting as
helpers [15–17]. Key capacities have been obtained for the
two special cases in which the eavesdropper’s channel is a
degraded version of the destination channel and in which
the destination and eavesdropper channels are conditionally
independent [13, 14]. Similar results have been derived for
multiterminal secret sharing [16, 17], with the two special
cases above subsumed by the more general condition that
the terminal symbols form a Markov chain on a tree.
Authentication of the public channel can be achieved by
the use of an initial short key and then a small portion of

the subsequent shared secret message [18]. A detailed study
of secret sharing over an unauthenticated public channel is
given in [19–21].

Other approaches to employ feedback have also been
recently considered [22–24]. In particular, it is shown in
[22] that positive secrecy capacity can be achieved for the
modulo-additive discrete memoryless wiretap channel and
the modulo-Λ channel if the destination is allowed to send
signals back to the source over the same wiretap channel and
both terminals can operate in full-duplex manner. In fact,
for the former channel, the secrecy capacity is the same as the
capacity of such a channel in the absence of the eavesdropper.

In this paper, we consider secret sharing over a fast-fading
MIMO wiretap channel. Thus, we are interested in the CW
model of [14] with memoryless conditionally independent
destination and eavesdropper channels and continuous
channel alphabets. We provide an extension of the key
capacity result in [14] for this case to include continuous
channel alphabets (Theorem 1). Using this result, we obtain
the key capacity of the fast-fading MIMO wiretap channel
(Section 3). Our result indicates that the key capacity is
always positive, no matter how large the channel gain of
the eavesdropper’s channel is; in addition this holds even
if the destination and eavesdropper CSI is available only at
the destination and eavesdropper, respectively. Of course, the
availability of the public channel implies that the destination
CSI could be fed back to the source. However, due to the
restrictions imposed on the secret-sharing strategies (see
Section 2), only causal feedback is allowed, and thus any
destination CSI available at source is “outdated.” This does
not turn out to be a problem since, unlike the approaches
mentioned above, the source does not use the CSI to avoid
sending secret information when the destination is not more
capable than the eavesdropper’s channel. As a matter of
fact, the fading process of the destination channel provides
a significant part of the common randomness from which
the source and the destination distill a secret key. This
fact is readily obtained from the alternative achievability
proof given in Section 4. We note that [25, 26] consider
the problem key generation from common randomness over
wiretap channels and exploit a Wyner-Ziv coding scheme
to limit the amount of information conveyed from the
source to the destination via the wiretap channel. Unlike
these previous works, we only employ Wyner-Ziv coding
to quantize the destination channel outputs. Our code
construction still relies on a public channel with unlimited
capacity to achieve the key capacity.

Finally, we also investigate the limiting value of the
key capacity under three asymptotic scenarios. In the first
scenario, the transmission power of the source becomes
asymptotically high (Corollary 1). In the second scenario,
the destination and eavesdropper have a large number of
antennas (Corollary 2). In the third scenario, the gain advan-
tage of the eavesdropper’s channel becomes asymptotically
large (Corollary 3). These three scenarios reveal two different
effects of spatial dimensionality upon key capacity. In the first
scenario, we show that the key capacity levels off as the power
increases if the eavesdropper has no fewer antennas than
the source. On the other hand, when the source has more
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antennas, the key capacity can increase without bound with
the source power. In the second scenario, we show that the
spatial dimensionality advantage that the eavesdropper has
over the destination has exactly the same effect as the channel
gain advantage of the eavesdropper. In the third scenario,
we show that the limiting key capacity is positive only if the
eavesdropper has fewer antennas than the source. The results
in these scenarios confirm that spatial dimensionality can be
used to combat the eavesdropper’s gain advantage, which was
already observed for the MIMO wiretap channel. Perhaps
more surprisingly, this is achieved with neither the source
nor destination needing any eavesdropper CSI.

2. Secret Sharing and Key Capacity

We consider the CW model of [14], and we recall its char-
acteristics for completeness. We consider three terminals,
namely, a source, a destination, and an eavesdropper. The
source sends symbols from an alphabet X. The destination
and eavesdropper observe symbols belonging to alphabets Y
and Z, respectively. Unlike in [14], X, Y, and Z need not to
be discrete. In fact, in Section 3 we will assume that they are
multi-dimensional vector spaces over the complex field. The
channel from the source to the destination and eavesdropper
is assumed memoryless. A generic symbol sent by the source
is denoted by X and the corresponding symbols observed by
the destination and eavesdropper are denoted by Y and Z,
respectively. For notational convenience (and without loss of
generality), we assume that (X ,Y ,Z) are jointly continuous,
and the channel is specified by the conditional probability
density function (pdf) pY ,Z|X(y, z | x). In addition, we
restrict ourselves to cases in which Y and Z are conditionally
independent given X , that is, pY ,Z|X(y, z | x) = pY |X(y |
x)pZ|X(z | x), which is a reasonable model for symbols
broadcast in a wireless medium. Hereafter, we drop the
subscripts in pdfs whenever the concerned symbols are well
specified by the arguments of the pdfs. We assume that
an interactive, authenticated public channel with unlimited
capacity is also available for communication between the
source and destination. Here, interactive means that the
channel is two-way and can be used multiple times, unlimited
capacity means that it is noiseless and has infinite capacity,
and public and authenticated mean that the eavesdropper can
perfectly observe all communications over this channel but
cannot tamper with the messages transmitted.

We consider the class of permissible secret-sharing
strategies suggested in [14]. Consider k time instants labeled
by 1, 2, . . . , k, respectively. The (X ,Y ,Z) channel is used n
times during these k time instants at i1 < i2 < · · · < in. Set
in+1 = k. The public channel is used for the other (k − n)
time instants. Before the secret-sharing process starts, the
source and destination generate, respectively, independent
random variable MX and MY . To simplify the notation, let ai

represent a sequence of messages/symbols a1, a2, . . . , ai. Then
a permissible strategy proceeds as follows.

(i) At time instant 0 < i < i1, the source sends
message Φi = Φi(MX ,Ψi−1) to the destination, and
the destination sends message Ψi = Ψi(MY ,Φi−1) to

the source. Both transmissions are carried over the
public channel.

(ii) At time instant i = i j for j = 1, 2, . . . ,n, the source
sends the symbol Xj = Xj(MX ,Ψi j−1) to the (X ,Y ,Z)
channel. The destination and eavesdropper observe
the corresponding symbols Yj and Zj . There is no
message exchange via the public channel, that is, Φi

and Ψi are both null.

(iii) At time instant i j < i < i j+1 for j = 1, 2, . . . ,n,
the source sends message Φi = Φi(MX ,Ψi−1) to the
destination, and the destination sends message Ψi =
Ψi(MY ,Y j ,Φi−1) to the source. Both transmissions
are carried over the public channel.

At the end of the k time instants, the source generates its
secret key K = K(MX ,Ψk), and the destination generates its
secret key L = L(MY ,Yn,Φk), where K and L takes values
from the same finite set K .

According to [14], R is an achievable key rate through the
channel (X ,Y ,Z) if for every ε > 0, there exists a permissible
secret-sharing strategy of the form described above such that

(1) Pr{K /=L} < ε,

(2) (1/n)I(K ;Zn,Φk,Ψk) < ε,

(3) (1/n)H(K) > R− ε,

(4) (1/n) log |K| < (1/n)H(K) + ε,

for sufficiently large n. The key capacity of the channel
(X ,Y ,Z) is the largest achievable key rate through the
channel. We are interested in finding the key capacity. For
the case of continuous channel alphabets considered here,
we also add the following power constraint to the symbol
sequence Xn sent out by the source:

1
n

n∑

j=1

∣∣∣Xj

∣∣∣
2 ≤ P (1)

with probability one (w.p.1) for sufficiently large n.

Theorem 1. The key capacity of a CW model (X ,Y ,Z) with
conditional pdf p(y, z | x) = p(y | x)p(z | x) is given by
maxX :E[|X|2]≤P[I(X ;Y)− I(Y ;Z)].

Proof. The case with discrete channel alphabets is established
in [14, Corollary 2 of Theorem 2], whose achievability proof
(also the ones in [16, 17]) does not readily extend to
continuous channel alphabets. Nevertheless the same single
backward message strategy suggested in [14] is still applicable
for continuous alphabets. That strategy uses k = n + 1
time instants with i j = j for j = 1, 2, . . . ,n. That is, the
source first sends n symbols through the (X ,Y ,Z) channel;
after receiving these n symbols, the destination feeds back
a single message at the last time instant to the source over
the public channel. A carefully structured Wyner-Ziv code
can be employed to support this secret-sharing strategy.
The detailed arguments are provided in the alternative
achievability proof in Section 4.

Here we outline an achievability argument based on
the consideration of a conceptual wiretap channel from the
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destination back to the source and eavesdropper suggested in
[13, Theorem 3]. First, assume the source sends a sequence
of i.i.d. symbols Xn, each distributed according to p(x), over
the wiretap channel. Suppose that E[|X|2] ≤ P. Because of
the law of large numbers, we can assume that Xn satisfies
the power constraint (1) without loss of generality. Let Yn

and Zn be the observations of the the destinations and
eavesdropper, respectively. To transmit a sequence Un of
symbols independent of (Xn,Yn,Zn), the destination sends
Un + Yn back to the source via the public channel. This
creates a conceptual memoryless wiretap channel from the
destination with input symbol U to the source in the
presence of the eavesdropper, where the source observes
(U + Y ,X) while the eavesdropper observes (U + Y ,Z).

Employing the continuous alphabet extension of the well
known result in [3], the secrecy capacity of the conceptual
wiretap channel (and hence the key capacity of the original
channel) is lower bounded by

max
U

[I(U ;U + Y ,X)− I(U ;U + Y ,Z)]. (2)

Note that the input symbol U has no power constraint since
the public channel has infinite capacity. But

I(U ;U + Y ,X)− I(U ;U + Y ,Z)

= I(U ;X) + I(U ;U + Y | X)

− [I(U ;Z) + I(U ;U + Y | Z)]

= h(U)− h(U | X) + h(U + Y | X)− h(U + Y | U ,X)

− h(U) + h(U | Z)− h(U + Y | Z) + h(U + Y | U ,Z)

= h(Y | Z)− h(Y | X) + [h(U + Y | X)− h(U | X)]

− [h(U + Y | Z)− h(U | Z)]

≥ h(Y | Z)− h(Y | X)− [h(U + Y | X)− h(U | X)]

≥ h(Y | Z)− h(Y | X)− [h(U + Y)− h(U)],
(3)

where the third equality results from h(U + Y | U , X) =
h(Y | U , X) = h(Y | X) due to the independence of U and
Y , the first inequality follows from the fact

h(U + Y | Z)− h(U | Z) ≥ h(U + Y | Z,Y)− h(U | Z)

= h(U | Z,Y)− h(U | Z) = 0,
(4)

which is again due to independence between (Y ,Z) and U ,
and the inequality on the last line follows from h(U + Y |
X)− h(U | X) = h(U + Y | X)− h(U) ≤ h(U + Y)− h(U).

Without loss of generality and for notational simplicity,
assume that Y and U are both one-dimensional real random

variables. Now, choose U to be Gaussian distributed with
mean 0 and variance σ2

U . Then

h(U + Y)− h(U) ≤ 1
2

log(2πe var(U + Y))

− 1
2

log
(
2πeσ2

U

)

= 1
2

log

(
σ2
U + var(Y)

σ2
U

)
,

(5)

where the first inequality follows from [27, Theorem 8.6.5],
and the last equality is due to the independence between Y
and U . Combining (3) and (5), for every ε > 0, we can choose
σ2
U large enough such that

I(U ;U + Y ,X)− I(U ;U + Y ,Z)

≥ h(Y | Z)− h(Y | X)− ε

= I(X ;Y)− I(Y ;Z)− ε.

(6)

Since ε is arbitrary, the key capacity is lower bounded by
maxE[|X|2]≤P[I(X ;Y)− I(Y ;Z)].

The converse proof in [14] is directly applicable to
continuous channel alphabets, provided that the average
power constraint (1) can be incorporated into the arguments
in [14, pp. 1129-1130]. This latter requirement is simplified
by the additive and symmetric nature of the average power
constraint [28, Section 3.6]. To avoid too much repetition, we
outline below only the steps of the proof that are not directly
available in [14, pp. 1129-1130].

For every permissible strategy with achievable key rate R,
we have

1
n
I(K ;L) = 1

n
H(K)− 1

n
H(K | L)

≥ 1
n
H(K)− 1

n

[
1 + Pr{K /=L} · log|K|]

>
1
n
H(K)− 1

n
− ε
[

1
n
H(K) + ε

]

> (1− ε)(R− ε)− 1
n
− ε2,

(7)

where the second line follows from Fano’s inequality, the
third line results from conditions (1) and (7) in the definition
of achievable key rate, and the last line is due to condition (5).
Thus it suffices to upper bound I(K ;L). From condition (3)
in the definition of achievable key rate and the chain rule, we
have

1
n
I(K ;L) <

1
n
I
(
K ;L | Zn,Φk,Ψk

)
+ ε

≤ 1
n
I
(
MX ;MY ,Yn | Zn,Φk,Ψk

)
+ ε,

(8)

where the second inequality is due to the fact that K =
K(MX ,Ψk) and L = L(MY ,Yn,Φk). By repeated uses of the
chain rule, the construction of permissible strategies, and
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the memoryless nature of the (X ,Y ,Z) channel, it is shown
in [14, pp. 1129-1130] that

1
n
I
(
MX ;MY ,Yn | Zn,Φk,Ψk

)
≤ 1

n

n∑

j=1

I
(
Xj ;Yj | Zj

)
. (9)

Now let Q be a uniform random variable that takes value
from {1, 2, . . . ,n} and is independent of all other random
quantities. Define (X̃ , Ỹ , Z̃) = (Xj ,Yj ,Zj) if Q = j. Then
it is obvious that pỸ ,Z̃|X̃( ỹ, z̃ | x̃) = pY ,Z|X( ỹ, z̃ | x̃), and (9)
can be rewritten as

1
n
I
(
MX ;MY ,Yn | Zn,Φk,Ψk

)

≤ I
(
X̃ ; Ỹ | Z̃,Q

)
≤ I

(
X̃ ; Ỹ | Z̃

)
,

(10)

where the second inequality is due to the fact that Q → X̃ →
(Ỹ , Z̃) forms a Markov chain. On the other hand, the power
constraint (1) implies that

E
[∣∣∣X̃

∣∣∣
2
]
= 1

n

n∑

j=1

E
[∣∣∣Xj

∣∣∣
2
]
≤ P. (11)

Combining (7), (8), and (10), we obtain

R <
1

1− ε

[
I
(
X̃ ; Ỹ | Z̃

)
+ 2ε +

1
n

]
. (12)

Since ε can be arbitrarily small when n is sufficiently large,
(12), together with (11), gives

R ≤ I
(
X̃ ; Ỹ | Z̃

)

≤ max
X :E[|X|2]≤P

I(X ;Y | Z)

= max
X :E[|X|2]≤P

[I(X ;Y)− I(Y ;Z)],

(13)

where the last line is due to the fact that p(y, z | x) = p(y |
x)p(z | x).

3. Key Capacity of Fast-FadingMIMO
Wiretap Channel

Consider that the source, destination, and eavesdropper have
mS, mD, and mW antennas, respectively. The antennas in
each node are separated by at least a few wavelengths, and
hence the fading processes of the channels across the transmit
and receive antennas are independent. Using the complex
baseband representation of the bandpass channel model:

YD = HDX + ND,

YW = αHWX + NW ,
(14)

where

(i) X is the mS × 1 complex-valued transmit symbol
vector by the source,

(ii) YD is the mD × 1 complex-valued receive symbol
vector at the destination,

(iii) YW is the mW × 1 complex-valued receive symbol
vector at the eavesdropper,

(iv) ND is the mD × 1 noise vector with independent
identically distributed (i.i.d.) zero-mean, circular-
symmetric complex Gaussian-distributed elements
of variance σ2

D (i.e., the real and imaginary parts of
each elements are independent zero-mean Gaussian
random variables with the same variance),

(v) NW is the mW × 1 noise vector with i.i.d.
zero-mean, circular-symmetric complex Gaussian-
distributed elements of variance σ2

W ,

(vi) HD is the mD×mS channel matrix from the source to
destination with i.i.d. zero-mean, circular-symmetric
complex Gaussian-distributed elements of unit vari-
ance,

(vii) HW is the mW ×mS channel matrix from the source
to eavesdropper with i.i.d. zero-mean, circular-
symmetric complex Gaussian-distributed elements
of unit variance,

(viii) α > 0 models the gain advantage of the eavesdropper
over the destination.

Note that HD, HW , ND, and NW are independent. The
wireless channel modeled by (14) is used n times as the
(X ,Y ,Z) channel described in Section 2 with Y = [YD HD]
and Z = [YW HW ]. We assume that the n uses of the wireless
channel in (14) are i.i.d. so that the memoryless requirement
of the (X ,Y ,Z) channel is satisfied. Since HD and HW are
included in the respective channel symbols observable by
the destination and eavesdropper (i.e., Y and Z, resp.),
this model also implicitly assumes that the destination and
eavesdropper have perfect CSI of their respective channels
from the source. In practice, we can separate adjacent uses
of the wireless channel by more than the coherence time of
the channel to approximately ensure the i.i.d. channel use
assumption. Training (known) symbols can be sent right
before or after (within the channel coherence period) by the
source so that the destination can acquire the required CSI.
The eavesdropper may also use these training symbols to
acquire the CSI of its own channel. If the CSI required at
the destination is obtained in the way just described, then
a unit of channel use includes the symbol X together with
the associated training symbols. However, as in [29], we do
not count the power required to send the training symbols
(cf. (1)). Moreover we note that the source (and also the
eavesdropper) may get some information about the outdated
CSI of the destination channel, because information about
the destination channel CSI, up to the previous use, may be
fed back to the source from the destination via the public
channel. More specifically, at time instant i j , the source
symbol Xj is a function of the feedback message Ψi j−1,
which is in turn some function of the realizations of HD at
time i1, i2, . . . , i j−1. We also note that neither the source nor
destination has any eavesdropper CSI. Referring back to (14),
these two facts imply that X is independent of HD, HW , ND,
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and NW ; that is, the current source symbol X is independent
of the current channel state.

Since the fading MIMO wiretap channel model in (14) is
a special case of the CW model considered in Section 2, the
key capacity CK is given by Theorem 1 as

CK = max
X :E[|X|2]≤P

[I(X ;YD,HD)− I(YD,HD;YW ,HW )].

(15)

Note that

I(X ;YD,HD)− I(YD,HD;YW ,HW )

= I(X ;YD | HD)− I(YD;YW | HD,HW )

= h(YD | YW ,HD,HW )− h(YD | X ,HD)

= h(YD | YW ,HD,HW )−mD log
(
πeσ2

D

)
.

(16)

Substituting this back into (15), we get

CK = max
X :E[|X|2]≤P

h(YD | YW ,HD,HW )−mD log
(
πeσ2

D

)
.

(17)

As a result, the key capacity of the fast-fading wiretap channel
described by (14) can be obtained by maximizing the con-
ditional entropy h(YD | YW ,HD,HW ). This maximization
problem is solved below.

Theorem 2. One has

CK

=E
⎡
⎣log

det
(
ImS +

(
α2P/mSσ

2
W

)
H†

WHW +
(
P/mSσ

2
D

)
H†

DHD

)

det
(
ImS +

(
α2P/mSσ

2
W

)
H†

WHW

)

⎤
⎦,

(18)

where † denotes conjugate transpose.

Proof. To determine the key capacity, we need the following
upper bound on the conditional entropy h(U | V).

Lemma 1. Let U and V be two jointly distributed complex
random vectors of dimensionsmU andmV , respectively. LetKU ,
KV , and KUV be the covariance of U , covariance of V , and
cross-covariance of U and V , respectively. If KV is invertible,
then

h(U | V) ≤ log det
(
KU − KUVK

−1
V KVU

)
+ mU log(πe).

(19)

The upper bound is achieved when [UT VT]T is a circular-
symmetric complex Gaussian random vector.

Proof. We can assume that both U and V have zero means
without loss of generality. Also assume the existence of all
unconditional and conditional covariances stated below. For
each v,

h(U | V = v) ≤ log
(
(πe)mU det

(
KU|v

))
, (20)

where KU|v is the covariance of U with respect to the
conditional density pU|V (u | v) [29, Lemma 2]. This implies

h(U | V) ≤ EV
[
log
(
(πe)mU det

(
KU|V

))]

≤ log det
(
EV
[
KU|V

])
+ mU log(πe)

≤ log det
(
KU − KUVK

−1
V KVU

)
+ mU log(πe).

(21)

The second inequality above is due to the concavity of the
function logdet over the set of positive definite symmetric
matrices [30, 7.6.7], and the Jensen’s inequality. To get the
third inequality, observe that EV [KU|V ] can be interpreted as
the covariance of the estimation error of estimating U by the
conditional mean estimator E[U | V]. On the other hand,
KU − KUVK

−1
V KVU is the covariance of the estimation error

of using the linear minimum mean squared error estimator
KUVK

−1
V V instead. The inequality results from the fact that

KU −KUVK
−1
V KVU ≥ EV [KU|V ] (i.e., [KU −KUVK

−1
V KVU]−

EV [KU|V ] is positive semidefinite) [31] and the inequality of
det(A) ≥ det(B) if A and B are positive definite, and A ≥ B
[30, , 7.7.4].

Suppose that [UT VT]
T

is a circular-symmetric com-
plex Gaussian random vector. For each v, the conditional
covariance of U , conditioned on V = v, is the same as
the (unconditional) covariance of U − KUVK

−1
V V . Since

U − KUVK
−1
V V is a circular-symmetric complex Gaussian

random vector [29, Lemma3] , so is U conditioned on V = v.
Hence by [29, Lemma 2], the upper bound in (20) is achieved
with KU|v = KU − KUVK

−1
V KVU , which also gives the upper

bound in (21).

To prove the theorem, we first obtain an upper bound on
CK and then show that the upper bound is achievable. Using
Lemma 1, we have

h(YD | YW ,HD,HW )−mD log
(
πeσ2

D

)

≤ E
[

log det
(
KYD − KYDYWK

−1
YW

KYWYD

)]
−mD log σ2

D,

(22)

where KYD and KYW are, respectively, the conditional covari-
ances of YD and YW , given HD and HW , and KYDYW and
KYWYD are the corresponding conditional cross-covariances.
Substituting (22) into (17), an upper bound on CK is

max
X :E[|X|2]≤P

E
[

log det
(
KYD − KYDYWK

−1
YW

KYWYD

)]
−mD log σ2

D.

(23)

Thus we need to solve the maximization problem (23). To do
so, let λ1, λ2, . . . , λmS be the (nonnegative) eigenvalues of KX .
Since both the distributions of HD and HW are invariant to
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any unitary transformation [29, Lemma 5], we can without
any ambiguity define

f
(
λ1, λ2, . . . , λmS

)

= E

[
log det

(
ImD +

1
σ2
D

HDK
1/2
X

×
(
ImS +

α2

σ2
W

K1/2
X H†

WHWK1/2
X

)−1

K1/2
X H†

D

⎞
⎠
⎤
⎦.

(24)

That is, we can assume KX = diag(λ1, λ2, . . . , λmS) with no
loss of generality. Then we have the following lemma, which
suggests that the objective function in (23) is a concave
function depending only on the eigenvalues of the covariance
of X .

Lemma 2. Suppose that X has an arbitrary covariance KX ,
whose (nonnegative) eigenvalues are λ1, λ2, . . . , λmS , then

E
[

log det
(
KYD − KYDYWK

−1
YW

KYWYD

)]
−mD log σ2

D

= f
(
λ1, λ2, . . . , λmS

) (25)

is concave in Λ = {λi ≥ 0 for i = 1, 2, . . . ,mS}.

Proof. First write AD = HDK
1/2
X and AW = αHWK1/2

X . It is
easy to see from (14) that KYD = ADA

†
D + σ2

DImD , KYW =
AWA†W + σ2

WImW , and KYDYW = ADA
†
W . Then

KYD − KYDYWK
−1
YW

KYWYD

=σ2
D

{
ImD +

1
σ2
D

AD

[
ImS−A†W

(
AWA†W +σ2

WImW

)−1
AW

]
A†D

}

=σ2
D

⎧
⎨
⎩ImD +

1
σ2
D

AD

[
ImS +

1
σ2
W

A†WAW

]−1

A†D

⎫
⎬
⎭,

(26)

where the last equality is due to the matrix inversion formula.
Substituting this result into the left-hand side of (25), we
obtain the right-hand side of (24), and hence (25).

To show concavity of f , it suffices to consider only diag-
onal KX = diag(λ1, λ2, . . . , λmS) in Λ. Note that the mapping

H : KX →
[

KYD KYDYW

KYWYD KYW

]
is linear in Λ. Also the mapping F :

[
KYD KYDYW

KYWYD KYW

]
→ KYD −KYDYWK

−1
YW

KYWYD is matrix-concave

in H(Λ) [32, Ex. 3.58]. Thus the composition theorem [32]
gives that the mapping G : KX → KYD − KYDYWK

−1
YW

KYWYD

is matrix-concave in Λ, since G = F ◦ H . Another use of
the composite theorem together with the concavity of the
function logdet as mentioned in the proof of Lemma 1 shows
that log detG is concave in Λ. Thus (25) implies that f is also
concave in Λ.

Hence it suffices to consider only those X with zero mean in
(23).

Now define the constraint set ΛP = {λi ≥ 0 for i =
1, 2, . . . ,mS and

∑mS
i=1 λi ≤ P}. Lemma 2 implies that

we can find the upper bound on CK by calculating
maxΛP f (λ1, λ2, . . . , λmS), whose value is given by the next
lemma.

Lemma 3. One has

max
ΛP

f
(
λ1, λ2, . . . , λmS

) = f
(
P

mS
,
P

mS
, . . . ,

P

mS

)
. (27)

Proof. Since the elements of both HD and HW are i.i.d.,
f is invariant to any permutation of its arguments. This
means that f is a symmetric function. By Lemma 2, f is
also concave in ΛP . Thus it is Schur-concave [33]. Hence
a Schur-minimal element (an element majorized by any
another element) in ΛP maximizes f . It is easy to check
that (P/mS,P/mS, . . . ,P/mS) is Schur-minimal in ΛP . Hence
maxΛP f (λ1, λ2, . . . , λmS) = f (P/mS,P/mS, . . . ,P/mS).

Combining the results in (23), (24), Lemmas 2 and 3, we
obtain the upper bound on the key capacity as

CK

≤E

⎡
⎣log det

⎛
⎝ImD +

P

mSσ
2
D

HD

(
ImS +

α2P

mSσ
2
W

H†
WHW

)−1
⎞
⎠H†

D

⎤
⎦

=E

⎡
⎣log

det
(
ImS +

(
α2P/mSσ

2
W

)
H†

WHW +
(
P/mSσ

2
D

)
H†

DHD

)

det
(
ImS +

(
α2P/mSσ

2
W

)
H†

WHW

)

⎤
⎦,

(28)

where the identity det(I+UV−1U†) = det(V+U†U)/ det(V)
for invertible V [34, Theorem 18.1.1] has been used.

On the other hand, consider choosing X to have
i.i.d. zero-mean, circular-symmetric complex Gaussian-
distributed elements of variance P/mS. Then conditioned on
HD and HW , [YT

D YT
W ]T are a circular-symmetric complex

Gaussian random vector, by applying [29, Lemmas 3 and 4]
to the linear model of (14). Hence Lemma 1 gives

h(YD | YW ,HD,HW )

= E
[

log det
(
KYD − KYDYWK

−1
YW

KYWYD

)]
+ mD log(πe),

(29)

where KYD = (P/mS)HDH
†
D + σ2

DImD , KYW = (α2P/
mS)HWH†

W + σ2
WImW , and KYDYW = (αP/mS)HDH

†
W . Sub-

stituting this back into (16) and using the matrix inversion
formula to simplify the resulting expression, we obtain the
same expression on the first line of (28) for I(X ;YD,HD) −
I(YD,HD;YW ,HW ). Thus the upper bound in (28) is achiev-
able with this choice of X ; hence it is in fact the key
capacity.

In Figure 1, the key capacities of several fast-fading
MIMO channels with different numbers of source, desti-
nation, and eavesdropper antennas are plotted against the
source signal-to-noise ratio (SNR) P/σ2, where σ2

D = σ2
W =

σ2. The channel gain advantage of the eavesdropper is set
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Figure 1: Key capacities of fast-fading MIMO wiretap channels
with different numbers of source, destination, eavesdropper anten-
nas. The eavesdropper’s channel gain α2 = 0 dB, and σ2

D = σ2
W = σ2.

to α2 = 1. We observe that the key capacity levels off
as P/σ2 increases in three of the four channels, except the
case of (mS,mD,mW ) = (2, 1, 1), considered in Figure 1. It
appears that the relative antenna dimensions determine the
asymptotic behavior of the key capacity when the SNR is
large. To more precisely study this behavior, we evaluate the
limiting value of CK as the input power P of the source
becomes very large. To highlight the dependence of CK on
P, we use the notation CK (P).

Corollary 1. (1) IfmW ≥ mS, then

lim
P→∞

CK (P) = E

⎡
⎣log

det
(
H†

WHW +
(
σ2
W/α2σ2

D

)
H†

DHD

)

det
(
H†

WHW

)

⎤
⎦.

(30)

(2) Suppose thatmW < mS. Define

C∞(P)

= E

[
log det

(
ImD +

P

mSσ
2
D

HD

×
[
ImS −H†

W

(
HWH†

W

)−1
HW

]
H†

D

)]
.

(31)

Then limP→∞(CK (P)/C∞(P)) = 1.

Proof. First fix (λ1, λ2, . . . , λmS) = (P/mS,P/mS, . . . ,P/mS) or
equivalently KX = (P/ms)ImS , and consider the mapping G

defined in the proof of Lemma 2 as a function of P. Also
define

f̂ (P)= log det

⎛
⎝ImD +

P

mSσ
2
D

HD

(
ImS +

α2P

mSσ
2
W

H†
WHW

)−1

H†
D

⎞
⎠.

(32)

Thus CK (P) = E[ f̂ (P)]. It is not hard to check that
for any P < P̃, G(P̃) ≥ G(P), which implies that

det(G(P)) ≤ det(G(P̃)). Hence f̂ is increasing in P. Since
the elements of HW are continuously i.i.d., rank(H†

WHW ) =
rank(HWH†

W ) = rank(HW ) = min(mS,mW ) w.p.1. Thus
the matrix H†

WHW (resp., HWH†
W ) is invertible w.p.1 when

mW ≥ mS (resp., mW < mS).
Now, consider the case of mW ≥ mS. As in (28), we have

f̂ (P)

= log
det
((
mSσ

2
W/α2P

)
ImS + H†

WHW +
(
σ2
W/α2σ2

D

)
H†

DHD

)

det
((
mSσ

2
W/α2P

)
ImS + H†

WHW

) .

(33)

Since H†
WHW is invertible w.p.1,

lim
P→∞

f̂ (P) = log
det
(
H†

WHW +
(
σ2
W/α2σ2

D

)
H†

DHD

)

det
(
H†

WHW

) w.p.1.

(34)

Hence Part (1) of the lemma results from monotone
convergence.

For the case of mW < mS, the matrix inversion formula
allows us to instead write

f̂ (P) = log det

⎛
⎝ImD +

P

mSσ
2
D

HD

[
ImS −H†

W

×
(
mSσ

2
W

α2P
ImW + HWH†

W

)−1

HW

⎤
⎦H†

D

⎞
⎠.

(35)

Since HWH†
W is invertible w.p.1, we can also define

f̂∞(P)

= log det

(
ImD +

P

mSσ
2
D
HD

[
ImS −H†

W

(
HWH†

W

)−1
HW

]
H†

D

)
.

(36)

Note that C∞(P) = E[ f̂∞(P)]. Since HW is of rank mW

w.p.1, it has the singular value decomposition HW =
UW [SW 0mS−mW ]V†

W , where SW = diag(s1, s2, . . . , smW ) is a
diagonal matrix whose diagonal elements are the positive
singular values of HW . Also let V = [Ṽ V̂]; that is, ṼW and
V̂W consist , respectively, of the first mW and the last mS−mW
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columns of V . Employing the unitary property of UW and
VW , it is not hard to verify that

f̂ (P)

= log det

(
ImD +

P

mSσ
2
D

HDV̂WV̂†
WH†

D + HDṼWΛW (P)Ṽ†
WH†

D

)
,

(37)

f̂∞(P) = log det

(
ImD +

P

mSσ
2
D

HDV̂WV̂†
WH†

D

)
, (38)

where ΛW (P) = (σ2
W/α2σ2

D)((mSσ
2
W/α2P)ImW + S2

W )
−1

. From

(37) and (38), it is clear that f̂∞(P) ≤ f̂ (P).
Further let t(P) = tr(HDṼWΛW (P)Ṽ†

WH†
D). Since

t(P)ImD ≥ HDṼWΛW (P)Ṽ†
WH†

D,

f̂ (P) ≤ log det

(
[1 + t(P)]ImD +

P

mSσ
2
D

HDV̂WV̂†
WH†

D

)

= mD log(1 + t(P))

+ log det

(
ImD +

P

mSσ
2
D[1 + t(P)]

HDV̂WV̂†
WH†

D

)
.

(39)

Let μ1,μ2, . . . ,μj be the positive eigenvalues of HDV̂WV̂†
WH†

D.
Note that 1 ≤ j ≤ min(mD,mS − mW ), because of the
fact that the elements of HD are continuously i.i.d. and are
independent of the elements of HW . Hence, from (38), (39),

and the fact that f̂∞(P) ≤ f̂ (P), we have

0 ≤ f̂ (P)− f̂∞(P)

≤ mD log(1 + t(P))

+ log

⎛
⎝
∏ j

i=1

[
1 +

(
Pμi/mSσ

2
D(1 + t(P))

)]

∏ j
i=1

[
1 +

(
Pμi/mSσ

2
D

)]

⎞
⎠

= mD log(1 + t(P))

+
j∑

i=1

log

(
(1/(1 + t(P))) +

(
mSσ

2
D/Pμi

)

1 +
(
mSσ

2
D/Pμi

)
)
.

(40)

Now note that

lim
P→∞

t(P) = σ2
W

α2σ2
D

tr
(
HDṼWS−2

W Ṽ†
WH†

D

)

= σ2
W

α2σ2
D

tr
([

H−1
W H†

D

]†
H−1

W H†
D

)
,

(41)

whereH−1
W denotes the Penrose-Moore pseudoinverse ofHW .

Then (40) implies that

0 ≤ lim inf
P→∞

[
f̂ (P)− f̂∞(P)

]

≤ lim sup
P→∞

[
f̂ (P)− f̂∞(P)

]

≤ (mD − j
)

log

(
1 +

σ2
W

α2σ2
D

tr
([

H−1
W H†

D

]†
H−1

W H†
D

))
w.p.1.

(42)

Hence by Fatou’s lemma, we get

0 ≤ lim inf
P→∞

[CK (P)− C∞(P)]

≤ lim sup
P→∞

[CK (P)− C∞(P)]

≤ E

[
(
mD − j

)
log

(
1 +

σ2
W

α2σ2
D

tr
([

H−1
W H†

D

]†
H−1

W H†
D

))]
.

(43)

From (38), it is clear that f̂∞(P) increases without bound
in P w.p.1; hence C∞(P) also increases without bound.
Combining this fact with (43), we arrive at the conclusion
of Part (2) of the lemma.

Part (1) of the lemma verifies the observations shown in
Figure 1 that the key capacity levels off as the SNR increases
if the number of source antennas is no larger than that of
eavesdropper antennas. When the source has more antennas,
Part (2) of the lemma suggests that the key capacity can
grow without bound as P increases similarly to a MIMO
fading channel with capacity C∞(P). Note that the matrix

ImS−H†
W (HWH†

W )
−1
HW in the expression that defines C∞(P)

is a projection matrix to the orthogonal complement of
the column space of HW . Thus C∞(P) has the physical
interpretation that the secret information is passed across
the dimensions not observable by the eavesdropper. The
most interesting aspect is that this mode of operation can be
achieved even if neither the source nor the destination knows
the channel matrix HW .

We note that the asymptotic behavior of the key capacity
in the high SNR regime summarized in Corollary 1 is similar
to the idea of secrecy degree of freedom introduced in [35].
The subtle difference here is that no up-to-date CSI of the
destination channel is needed at the source.

Another interesting observation from Figure 1 is that for
the case of (mS,mD,mW ) = (1, 10, 10), the source power P
seems to have little effect on the key capacity. A small amount
of source power is enough to get close to the leveling key
capacity of about 1 bit per channel use. This observation
is generalized below by Corollary 2, which characterizes
the effect of spatial dimensionality of the destination and
eavesdropper on the key capacity when the destination and
eavesdropper both have a large number of antennas.
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Corollary 2. When mD and mW approach infinity in such a
way that limmD ,mW →∞mW/mD = β,

CK −→ mS log

(
1 +

1
βα2σ2

D/σ
2
W

)
. (44)

Proof. This corollary is a direct consequence of the fact that
(1/mD)H†

DHD → ImS and (1/mW )H†
WHW → ImS w.p.1,

which is in turn due to the strong law of large numbers.

Note that we can interpret the ratio β as the spatial
dimensionality advantage of the eavesdropper over the
destination. The expression for the limiting CK in the
corollary clearly indicates that this spatial dimensionality
advantage affects the key capacity in the same way as the
channel gain advantage α2.

In Figure 2, the key capacities of several fast-fading
MIMO channels with different numbers of source, desti-
nation, and eavesdropper antennas are plotted against the
eavesdropper’s channel gain advantage α2, with P/σ2 =
10 dB. The results in Figure 2 show the other effect of
spatial dimensionality. We observe that the key capacity
decreases almost reciprocally with α2 in the channels with
(mS,mD,mW ) = (1, 1, 1) and (mS,mD,mW ) = (2, 2, 2), but
stays almost constant for the channel with (mS,mD,mW ) =
(2, 1, 1). It seems that the relative numbers of source and
eavesdropper antennas again play the main role in differ-
entiating these two different behaviors of the key capacity.
To verify that, we evaluate the limiting value of CK as the
gain advantage α2 of the eavesdropper becomes very large.
To highlight the dependence of CK on α2, we use the notation
CK (α2).

Corollary 3. One has

lim
α→∞CK

(
α2) =

⎧
⎨
⎩

0, if mW ≥ mS,

C∞(P), if mW < mS.
(45)

Proof. Similar to the proof of Corollary 1.

Similar to the case of large SNR, when the number of
source antennas is larger than that of the eavesdropper’s
antennas, secret information can be passed across the
dimensions not observable by the eavesdropper. This can be
achieved with neither the source nor the destination knowing
the channel matrix HW .

4. Alternative Achievability of Key Capacity

In this section, we provide an alternative proof of achievabil-
ity for key capacity, which does not require the transmission
of continuous symbols over the public channel. We derive the
result from “first principles,” which provides more insight on
the desirable structure of a practical key agreement scheme.
The main steps of the key agreement procedure are the
following:

(1) the source sends a sequence of i.i.d. symbols Xn;

(2) the destination “quantizes” its received sequence Yn

into Ŷ n with a Wyner-Ziv compression scheme;
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Figure 2: Key capacities of fast-fading MIMO wiretap channels
with different numbers of source, destination, eavesdropper anten-
nas. The source signal to noise ratio P/σ2 = 10 dB, where σ2

D =
σ2
W = σ2.

(3) the destination uses a binning scheme with the
quantized symbol sequences to determine the secret
key and the information to feedback to the source
over the public channel;

(4) the source exploits the information sent by the
destination to reconstruct the destination’s quantized
sequence Ŷ n and uses the same binning scheme to
generate its secret key.

The secrecy of the resulting key is established by carefully
structuring the binning scheme.

For the memoryless wiretap channel (X ,Y ,Z) specified
by the joint pdf p(y | x)p(z | x)p(x), consider the quadruple
(X ,Y , Ŷ ,Z) defined by the joint pdf p(x, y, ŷ, z) = p( ŷ |
y)p(y | x)p(z | x)p(x) with p( ŷ | y) to be specified later.
We assume that Ŷ takes values in the alphabet Y. Given
a sequence of n elements xn = (x1, x2, . . . , xn), p(xn) =∏n

j=1p(xj) unless otherwise specified. Similar notation
and convention apply to all other sequences as well as
their corresponding pdfs and conditional pdfs considered
hereafter.

4.1. Random Code Generation. Choose p( ŷ | y) such that
I(X ; Ŷ) − I(Ŷ ;Z) > 0 and I(Ŷ ;Z) > 0, and let p( ŷ)
denote the corresponding marginal. Note that the existence
of such p( ŷ | y) can be assumed without loss of generality if
I(X ;Y)− I(Y ;Z) > 0 and I(Y ;Z) > 0. If I(X ;Y)− I(Y ;Z) =
0, there is nothing to prove. Similarly, if I(Y ;Z) = 0, the
construction below can be trivially modified to show that
I(X ;Y) is an achievable key rate.
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Fix a small (small enough so that the various rate
definitions and bounds on probabilities below make sense
and are nontrivial) ε > 0. Let us define

R1
Δ= I
(
Y ; Ŷ

)
+ 4ε,

R2
Δ= I
(
Y ; Ŷ

)
− I
(
X ; Ŷ

)
+ 22ε,

R3
Δ= I
(
X ; Ŷ

)
− I
(
Ŷ ;Z

)
− ε,

R4
Δ= I
(
Ŷ ;Z

)
− 17ε.

(46)

For each j = 1, 2, . . . , 2nR2 and l = 1, 2, . . . , 2nR3 , gen-
erate 2nR4 codewords Ŷ n( j, l, 1), Ŷ n( j, l, 2), . . . , Ŷ n( j, l, 2nR4 )
according to p( ŷn). The set of codewords {Ŷ n( j, l, k)} with
k = 1 . . . 2nR4 forms a subcode denoted by C( j, l). The
union of all subcodes C( j, l) for j = 1, 2, . . . , 2nR2 and l =
1, 2, . . . , 2nR3 forms the code C. For convenience, we denote
the 2nR1 codewords in C as Ŷ n(1), Ŷ n(2), . . . , Ŷ n(2nR1 ), where
Ŷ n( j + (l − 1)2nR2 + (w − 1)2n(R2+R3)) = Ŷ n( j, l,w) for j =
1, 2, . . . , 2nR2 , l = 1, 2, . . . , 2nR3 , and w = 1, 2, . . . , 2nR4 . The
code C and its subcodes C( j, l) is revealed to the source,
destination, and eavesdropper. In the following, we refer to
a codeword or its index in C interchangeably. Under this
convention, the subcode C( j, l) are also the set that contains

all the indices of its codewords. Denote Ĉ( j) = ⋃2nR3

l=1 C( j, l)

and C̃(l) = ⋃2nR2

j=1 C( j, l).

4.2. Secret Sharing Procedure. For convenience, we define
the joint typicality indicator function Tε(·) that takes in a
number of sequences as its arguments. The value of Tε(·)
is 1 if the sequences are ε-jointly typical, and the value is
0 otherwise. Further define the indicator function for the
sequence pair (yn, ŷn):

Sε
(
yn, ŷn

) =
⎧
⎨
⎩

1, if Pr
{
Tε
(
Xn, yn, ŷn,Zn

) = 1
} ≥ 1− ε,

0, otherwise,
(47)

where (Xn,Zn) is distributed according to p(xn, zn | yn, ŷn)
in the definition above.

The source generates a random sequence Xn distributed
according to p(xn). If Xn satisfies the average power
constraint (1), the source sends Xn through the (X ,Y ,Z)
channel. Otherwise, it ends the secret-sharing process. Since
p(x) satisfies E[|X|2] ≤ P, the law of large numbers implies
that the probability of the latter event can be made arbitrarily
small by increasing n. Hence we can assume below, with
no loss of generality, that Xn satisfies (1) and is sent by
the source. This assumption helps to make the probability
calculations in Section 4.3 less tedious.

Upon reception of the sequence Yn, the destination tries
to quantize the received sequence. Let M be the output of its
quantizer. Specifically, if there is a unique sequence Ŷ n(m) ∈
C for some m ∈ {1, 2, . . . , 2nR1} such that Sε(Yn, Ŷ n(m)) = 1,
then it sets the output of the quantizer to M = m. If there
is more than one such sequence, M is set to be the smallest

sequence index m. If there is no such sequence, it sets M = 0.
Let L and J be the unique indices such that Ŷ n(M) ∈ C(J ,L).
The index L will be used as the key while the index J is fed
back to the source over the public channel, that is, Ψk = J . If
M = 0, set J = 0 and choose L randomly over {1, 2, . . . , 2nR3}
with uniform probabilities.

After receiving the feedback information J via the public
channel, the source attempts to find a unique Ŷ n(m) ∈ C

such that Tε(Xn, Ŷ n(m)) = 1 and m ∈ Ĉ(J). If there is such
a unique Ŷ n(m), the source decodes M̂ = m. If there is no
such sequence or more than one such sequence, the source
sets M̂ = 0. If J = 0, it sets M̂ = 0. Finally, if M̂ > 0, the
source generates its key K = k, such that M̂ ∈ C(J , k). If
M̂ = 0, it sets K = 0.

We also consider a fictitious receiver who observes the
sequence Zn and obtains both indices J and L via the
public channel. This receiver sets M̃ = 0 if J = 0.
Otherwise, it attempts to find a unique Ŷ n(m) ∈ C such
that Tε(Ŷ n(m),Zn) = 1 and m ∈ C(J ,L). If there is such
a unique Ŷ n(m), the source decodes M̃ = m. If there is no
such sequence or more than one such sequence, the source
sets M̃ = 0.

4.3. Analysis of Probability of Error. We use a random coding
argument to establish the existence of a code with rates given
by (46) such that Pr{K /=L} and Pr{M /= M̃} vanish in the
limit of large block length n. Without further clarification,
we note that the probabilities of the events below, except
otherwise stated, are over the joint distribution of the
codebook C, codewords, and all other random quantities
involved.

Before we proceed, we introduce the following lemma
regarding the indicator function Sε.

Lemma 4. (1) If (Yn, Ŷ n) distributes according to p(yn, ŷn),
then Pr{Sε(Yn, Ŷ n) = 1} > 1− ε for sufficiently large n.

(2) If Ŷ n distributes according to p( ŷn), then Pr{Sε(yn,
Ŷ n) = 1} ≤ 2−n(R1−7ε)/(1− ε) for all yn.

(3) If Yn distributes according to p(yn), then Pr{Sε(Yn,
ŷn) = 1} ≤ 2−n(R1−7ε)/(1− ε) for all ŷn.

(4) If (Yn, Ŷ n) distributes according to p(yn)p( ŷn), then
Pr{Sε(Yn, Ŷ n) = 1} > (1 − ε) · 2−n(R1−ε) for sufficiently large
n.

Proof. (1) This claim is actually shown in [36]. We briefly
sketch the proof here using our notation for completeness
and easy reference. By the reverse Markov inequality [36],

Pr
{
Sε
(
Yn, Ŷ n

)
= 1

}

≥1−
1− Pr

{
Tε

(
Xn,Yn, Ŷ n,Zn

)
= 1

}

1− (1− ε)
> 1− ε ,

(48)

where the second inequality is due to that fact that
Pr{Tε(Xn,Yn, Ŷ n,Zn) = 1} > 1− ε2 for sufficiently large n.
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(2) First, we only need to consider typical yn since the
bound is trivial when yn is not typical. Notice that for any
such yn,

1 ≥
∫
Tε
(
xn, yn, ŷn, zn

)
p
(
xn, ŷn, zn | yn)dxndzndŷn

=
∫

Pr
{
Tε
(
Xn, yn, ŷn,Zn

) = 1
} · p

(
yn, ŷn

)

p
(
yn
) dŷn

≥
∫

Pr
{
Tε
(
Xn, yn, ŷn,Zn

) = 1
} · 2−n(h(Y ,Ŷ)+ε)

2−n(h(Y)−ε) dŷn

= 2−n(h(Ŷ |Y)+2ε)
∫

Pr
{
Tε
(
Xn, yn, ŷn,Zn

) = 1
}
dŷn.

(49)

Hence

2n(h(Ŷ |Y)+2ε) ≥
∫

Pr
{
Tε
(
Xn, yn, ŷn,Zn

) = 1
}
dŷn

≥
∫
Sε
(
yn, ŷn

) · Pr
{
Tε
(
Xn, yn, ŷn,Zn

) = 1
}
dŷn

≥ (1− ε)
∫
Sε
(
yn, ŷn

)
dŷn.

(50)

Now

Pr
{
Sε
(
yn, Ŷ n

)
= 1

}

=
∫
Sε
(
yn, ŷn

)
p
(
ŷn
)
dŷn

≤
∫
Sε
(
yn, ŷn

)
2−n(h(Ŷ)−ε)dŷn

≤ 2−n(I(Y ;Ŷ)−3ε)

1− ε
,

(51)

where the last inequality is due to (50).
(3) Same as Part (2), interchanging the roles of yn and ŷn.
(4) From Part (1), we get

1− ε <
∫
Sε
(
yn, ŷn

)
p
(
yn, ŷn

)
dyndŷn

=
∫
Sε
(
yn, ŷn

) p
(
yn, ŷn

)

p
(
yn
)
p
(
ŷn
) p
(
yn
)
p
(
ŷn
)
dyndŷn

≤
∫
Sε
(
yn, ŷn

) · 2−n(h(Y ,Ŷ)−ε)

2−n(h(Y)+ε) · 2−n(h(Ŷ)+ε)

· p(yn)p( ŷn)dyndŷn

= 2n(I(Y ;Ŷ)−3ε)Pr
{
Sε
(
Yn, Ŷ n

)
= 1

}
.

(52)

Moreover we need to bound the probabilities of the
following events pertaining to M.

Lemma 5. (1) Pr{M = 0} < 2ε for sufficiently large n.
(2) For m = 1, 2, . . . , 2nR1 , Pr{M = m} ≤ 2−n(R1−7ε)/(1 −

ε).
(3) When n is sufficiently large, Pr{M = m} ≥

[1− (2−n(R1−7ε)/(1− ε))]
m−1 · (1 − ε)2−n(R1−ε) uniformly for

allm = 1, 2, . . . , 2nR1 .
(4) When n is sufficiently large, Pr{J = j, L = l} >

(1− ε)4 · 2−n(R1−R4+6ε) uniformly for all j = 1, 2, . . . , 2nR2 and
l = 1, 2, . . . , 2nR3 .

Proof. (1) We will use an argument similar to the one in
the achievability proof of rate distortion function in [27,
Section 10.5] to bound Pr{M = 0}. First note that {M = 0}
is the event that Sε(Yn, Ŷ n(m)) = 0 for all m ∈ {1, 2, . . . ,R1},
and hence

Pr{M = 0} = Pr

⎧
⎨
⎩

2nR1⋂

m=1

{
Sε
(
Yn, Ŷ n(m)

)
= 0

}
⎫
⎬
⎭

=
∫ [

Pr
{
Sε
(
yn, Ŷ n(1)

)
= 0

}]2nR1

p
(
yn
)
dyn,

(53)

where the second equality is due to the fact that
Ŷ n(1), . . . , Ŷ n(2nR1 ) are i.i.d. given each fixed yn. But

[
Pr
{
Sε
(
yn, Ŷ n(1)

)
= 0

}]2nR1

=
[
1−

∫
Sε
(
yn, ŷn

)
p
(
ŷn
)
dŷn

]2nR1

=
[

1−
∫
Sε
(
yn, ŷn

)
p
(
ŷn | yn) p

(
yn
)
p
(
ŷn
)

p
(
yn, ŷn

) dŷn
]2nR1

≤
[

1−
∫
Sε
(
yn, ŷn

)
p
(
ŷn | yn)2−n(h(Y)+ε) · 2−n(h(Ŷ)+ε)

2−n(h(Y ,Ŷ)−ε) dŷn
]2nR1

=
[
1− 2−n(I(Y ;Ŷ)+3ε)

∫
Sε
(
yn, ŷn

)
p
(
ŷn | yn)dŷn

]2nR1

≤1−
∫
Sε
(
yn, ŷn

)
p
(
ŷn | yn)dŷn + exp(−2nε),

(54)

where the inequality on the fourth line is due to the fact
that Sε(yn, ŷn) = 1 implies Tε(yn, ŷn) = 1, and the last line
results from the inequality (1− xy)k ≤ 1 − x + e−ky for all
0 ≤ x, y ≤ 1 and positive integer k [27, Lemma 10.5.3].
Substituting (54) back into (53) and using Lemma 4 Part (1),
we get

Pr{M = 0} ≤ 1− Pr
{
Sε
(
Yn, Ŷ n

)
= 1

}

+ exp(−2nε) < ε + ε = 2ε
(55)

for sufficiently large n.
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(2) Notice that for m = 1, 2, . . . , 2nR1 ,

Pr{M = m}

= Pr
{
Sε
(
Yn, Ŷ n(m)

)
= 1,

Sε
(
Yn, Ŷ n(m−1)

)
=0, . . . , Sε

(
Yn, Ŷ n(1)

)
=0
}

=
∫

Pr
{
Sε
(
yn, Ŷ n(1)

)
= 1

}

×
[

Pr
{
Sε
(
yn, Ŷ n(1)

)
= 0

}]m−1
p
(
yn
)
dyn,

(56)

where the second equality results from the i.i.d. nature of
Ŷ n(1), . . . , Ŷ n(m). Thus we have

Pr{M = m} ≤ Pr
{
Sε
(
Yn, Ŷ n(1)

)
= 1

}
≤ 2−n(R1−7ε)

1− ε
,

(57)

where the last inequality is due to Part (2) of Lemma 4 since
Yn and Ŷ n(1) are independent.

(3) From (56), we have the lower bound

Pr{M = m}

≥
[

1− 2−n(R1−7ε)

1− ε

]m−1

Pr
{
Sε
(
Yn, Ŷ n(1)

)
= 1

}

≥
[

1− 2−n(R1−7ε)

1− ε

]m−1

· (1− ε)2−n(R1−ε),

(58)

where the first inequality is due to Part (2) of Lemma 4, and
the second inequality is from Part (4) of Lemma 4 when n
is sufficiently large. Note that the same sufficiently large n is
enough to guarantee the validity of the lower bound above
for all m = 1, 2, . . . , 2nR1 .

(4) First note that, for j = 1, 2, . . . , 2nR2 and l =
1, 2, . . . , 2nR3 ,

Pr
{
J = j, L = l

}

=
∑

m∈C( j,l)

Pr{M = m}

=
2nR4∑

w=1

Pr
{
M = j + (l − 1)2nR2 + (w − 1)2n(R2+R3)

}
.

(59)

Thus applying Part (3) of the lemma, we get

Pr
{
J = j, L = l

}

≥ (1− ε)2−n(R1−ε)

·
2nR4∑

w=1

[
1− 2−n(R1−7ε)

1− ε

] j−1+(l−1)2nR2 +(w−1)2n(R2+R3)

≥ (1− ε)2−n(R1−ε)
[

1− 2−n(R1−7ε)

1− ε

]2n(R2+R3)

×
1−

[
1− 2−n(R1−7ε)/(1− ε)

]2nR1

1− [1− 2−n(R1−7ε)/(1− ε)]2n(R2+R3)

≥ (1− ε)2−n(R1−ε)
[

1− 2−n(R4−7ε)

1− ε

]

·
1−

[
1− 2−n(R1−7ε)/(1− ε)

]2nR1

1− [1− 2−n(R4−7ε)/(1− ε)]

≥ (1−ε)2 · 2−n(R1−R4+6ε)

[
1− 2−n(R4−7ε)

1− ε

][
1− exp

(−27nε
)

1− ε

]

> (1− ε)4 · 2−n(R1−R4+6ε)

(60)

uniformly for all j = 1, 2, . . . , 2nR2 and l = 1, 2, . . . , 2nR3 , when
n is sufficiently large. The third lower bound of (60) above
is obtained from the inequality (1− x)k ≥ 1 − kx for any
0 ≤ x ≤ 1 and positive integer k. The fourth lower bound is
in turn based on the inequality (1− x)k ≤ e−kx for 0 ≤ x ≤ 1
and positive integer k.

We first consider the error event {K /=L}. Note that

Pr{K /=L} = Pr{M = 0} + Pr{M > 0, K /=L}

= Pr{M = 0} +
2nR1∑

m=1

Pr
{
Ẽm ∪ Em,M = m

}

≤ Pr{M = 0} +
2nR1∑

m=1

Pr
{
Ẽm,M = m

}

+
2nR1∑

m=1

Pr{Em,M = m},

(61)

where Ẽm is the event {Tε(Xn, Ŷ n(m)) = 0}, and Em is the
event that there is an m′ ∈ Ĉ( j) such that m ∈ Ĉ( j), m′ /=m,
and Tε(Xn, Ŷ n(m′)) = 1. From (56), we have

Pr
{
Ẽm, M = m

}

= Pr
{
Tε

(
Xn, Ŷ n(m)

)
= 0, Sε

(
Yn, Ŷ n(m)

)
= 1,

Sε
(
Yn, Ŷ n(m− 1)

)
= 0, . . . , Sε

(
Yn, Ŷ n(1)

)
= 0

}
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≤ Pr
{
Tε

(
Xn,Yn, Ŷ n(m),Zn

)
= 0, Sε

(
Yn, Ŷ n(m)

)
= 1,

Sε
(
Yn, Ŷ n(m− 1)

)
= 0, . . . , Sε

(
Yn, Ŷ n(1)

)
= 0

}

=
∫⎡
⎣
∫

Pr

⎧
⎨
⎩Tε

(
xn, yn, Ŷ n(m), zn

)
= 0, Sε

(
yn, Ŷ n(m)

)
=1

⎫
⎬
⎭

×p(xn, zn | yn)dxndzn
⎤
⎦

·
m−1∏

m′=1

Pr
{
Sε
(
yn, Ŷ n(m′)

)
= 0

}
p
(
yn
)
dyn

=
∫ ({∫ [

1− Tε
(
xn, yn, ŷn, zn

)]
p
(
xn, zn | yn, ŷn

)
dxndzn

}

·Sε
(
yn, ŷn

)
p
(
ŷn
)
dŷn

)

·
m−1∏

m′=1

Pr
{
Sε
(
yn, Ŷ n(m′)

)
= 0

}
p
(
yn
)
dyn

≤ ε · Pr
{
Sε
(
Yn, Ŷ n(m)

)
= 1, Sε

(
Yn, Ŷ n(m− 1)

)
= 0, . . . ,

Sε
(
Yn, Ŷ n(1)

)
= 0

}

= ε · Pr{M = m},
(62)

where the equality on the fourth line is due to the i.i.d. nature
of Ŷ n(1), . . . , Ŷ n(2nR1 ), the equality on the fifth line results
from the fact that p(xn, zn | yn) = p(xn, zn | yn, ŷn) (since
(X ,Z) → Y → Ŷ), and the inequality on the second last
line is from the definition of the indicator function Sε.

Similarly assuming m ∈ Ĉ( j), we have from (56)

Pr{Em,M = m}

≤
∑

m′∈Ĉ( j)
m′ /=m

Pr
{
Tε

(
Xn, Ŷ n(m′)

)
= 1, Sε

(
Yn, Ŷ n(m)

)
= 1

}

=
∑

m′∈Ĉ( j)
m′ /=m

∫
Pr
{
Tε

(
xn, Ŷ n(m′)

)
= 1

}

· Pr
{
Sε
(
yn, Ŷ n(m)

)
= 1

}
p
(
xn, yn

)
dxndyn

≤ 2n(R1−R2) · 2−n(I(X ;Ŷ)−3ε) · 2−n(R1−7ε)

1− ε
= 2−n(R1+8ε)

1− ε
,

(63)

where the equality on the third line is due to the
independence between Ŷ n(m′) and Ŷ n(m), and the last
inequality results from Part (2) of Lemma 4 and the bound

Pr{Tε(xn, Ŷ n(m′)) = 1} ≤ 2−n(I(X ;Ŷ)−3ε), which is a
direct result of [27, Theorem 15.2.2]. Hence, substituting the

bounds in (62) and (63) back into (61) and using Part (1) of
Lemma 5, we obtain

Pr{K /=L}

≤ 2ε + ε ·
2nR1∑

m=1

Pr{M = m} +
2nR1∑

m=1

2−n(R1+8ε)

1− ε

= 2ε + ε +
2−8nε

1− ε
< 4ε

(64)

for n is sufficiently large.
Next we consider the event {M /= M̃}. Define F̃m as the

event {Tε(Ŷ n(m),Zn) = 0} and Fm as the event that there
is an m′ ∈ C(l, j) such that m ∈ C(l, j), m′ /=m, and
Tε(Ŷ n(m′),Zn) = 1. Then we have, when n is sufficiently
large, uniformly for all j = 1, 2, . . . , 2nR2 and l = 1, 2, . . . , 2nR3 ,

Pr
{
M̃ /=M | J = j, L = l

}

≤
∑

m∈C( j,l)

Pr
{
F̃m,M = m | J = j,L = l

}

+
∑

m∈C( j,l)

Pr
{
F̃m,M = m | J = j,L = l

}

≤
∑

m∈C( j,l)

ε · Pr
{
M = m | J = j,L = l

}

+
∑

m∈C( j,l)

2−n(R1+7ε)

1− ε
· 1

Pr
{
J = j, L = l

}

≤ ε +
2−n(R1+7ε)

1− ε
· 2nR4

(1− ε)4 · 2−n(R1−R4+6ε)

= ε +
2−nε

(1− ε)5 < 2ε.

(65)

Note that the inequality on the third line of (65) results
from upper bounds of Pr{F̃m,M = m} and Pr{Fm,M =
m}, which can be obtained in ways almost identical to the
derivations in (62) and (63), respectively. The inequality on
the fourth line is, on the other hand, due to Part (4) of
Lemma 5.

By expurgating the random code ensemble, we obtain the
following lemma.

Lemma 6. For any ε > 0 and n sufficiently large, there exists
a code Cn with the rates R1, R2, R3, and R4 given by (46) such
that

(1) Pr{K /=L | C = Cn} < 8ε,

(2) Pr{M /= M̃ | C = Cn} < 8ε,

(3) Pr{M = m | C = Cn} ≤ 2−n(R1−7ε)/(1 − ε) for all
m = 1, 2, . . . , 2nR1 ,

(4) Pr{L = l | C = Cn} < 2−n(R3−8ε) for all l =
1, 2, . . . , 2nR3 .



EURASIP Journal on Wireless Communications and Networking 15

Proof. Combining Part (1) of Lemma 5, (64), and (65), we
have

Pr{M = 0} + Pr{K /=L} + Pr
{
M /= M̃

}
< 8ε (66)

for sufficiently large n. This implies that there must exist a Cn

satisfying Pr{K /=L | C = Cn} < 8ε, Pr{M /= M̃ | C = Cn} <
8ε, and Pr{M = 0 | C = Cn} < 8ε. Thus, Parts (1) and (2)
are proved.

Now, fix this Cn. For m = 1, 2, . . . , 2nR1 , let ŷn(m) be the
mth codeword of Cn. Then, by Part (3) of Lemma 4,

Pr{M=m | C=Cn}

≤ Pr
{
Sε
(
Yn, ŷn(m)

)=1
} ≤ 2−n(R1−7ε)

1− ε
,

(67)

hence, Part (3) results.
Note that, for l = 1, 2, . . . , 2nR3 ,

Pr{L = l | C = Cn}
= Pr{L = l |M = 0, C = Cn}Pr{M = 0 | C = Cn}

+ Pr{L = l, M > 0 | C = Cn}.
(68)

We know from the discussion above that Pr{L = l | M =
0, C = Cn}Pr{M = 0 | C = Cn} < 2−nR3 · 8ε. Also from Part
(3) of the lemma,

Pr{L = l,M > 0 | C = Cn}

=
∑

m∈C̃n(l)

Pr{M = m | C = Cn} ≤ 2n(R1−R3)

· 2−n(R1−7ε)

1− ε
= 2−n(R3−7ε)

1− ε
.

(69)

Putting these back into (68), we get

Pr{L = l | C = Cn}

< 2−n(R3−7ε)
[

8ε · 2−7nε +
1

1− ε

]
< 2−n(R3−8ε)

(70)

for sufficiently large n. Thus, Part (4) is proved.

In the remainder of the paper, we use a fixed code
Cn identified by Lemma 6. For convenience, we drop the
conditioning on Cn.

4.4. Secrecy Analysis. First we proceed to bound H(K). Note
that

H(K) = H(L) + H(K | L)−H(L | K)

≥ H(L)−H(L | K).
(71)

Using Part (1) of Lemma 6 together with Fano’s inequality
gives H(L | K) ≤ 1 + 8nεR3. Moreover Part (4) of Lemma 6
implies that H(L) > n(R3 − 8ε). Putting these bounds back
into (71), we have

R3 − (8R3 + 8)ε − 1
n
<

1
n
H(K) ≤ R3. (72)

Next we bound I(K ;Zn, J). Note that

I(K ;Zn, J) = I(L;Zn, J) + I(K ;Zn, J | L)

− I(L;Zn, J | K)

≤ I(L;Zn, J) + I(K ;Zn, J | L)

≤ I(L;Zn, J) + H(K | L)

≤ I(L;Zn, J) + 8nεR3 + 1,

(73)

where the last inequality is obtained from Part (1) of
Lemma 6 and Fano’s inequality like before. In addition, it
holds that

I(L;Zn, J) = H(L)−H(L | Zn, J)

= H(L)−H(L, J | Zn) + H(J | Zn)

= H(L) + H(J | Zn)−H(L, J ,M | Zn)

+ H(M | Zn,L, J)

≤ H(L) + H(J)−H(M | Zn)

−H(L, J |M,Zn) + H(M | Zn,L, J)

≤ H(L) + H(J) + I(M;Zn)

−H(M) + 8nR1ε + 1,

(74)

where the second last inequality follows from H(J | Zn) ≤
H(J), and the last inequality follows from H(L, J | M,Zn) =
0 (by definition of J and L) and H(M | Zn,L, J) ≤ 1 +
8nR1ε (by Fano’s inequality applied to the fictitious receiver).
By construction of the code Cn, it holds that H(L) ≤
nR2 and H(J) ≤ nR3. In addition, Part (3) of Lemma 6
implies H(M) ≥ n(R1 − 8ε). Finally, note that I(M;Zn) ≤
I(Yn;Zn) = nI(Y ;Z) by the data-processing inequality since
M is a deterministic function of Yn and the memoryless
property of the channel between Yn and Zn. Combining
these observations and substituting the values of R1, R2, and
R3 given by (46) back into (73), we obtain

1
n
I(K ;Zn, J) ≤ R2 + R3 − R1 + I(Y ;Z)

+ (8R1 + 8R3 + 8)ε +
2
n

≤ I(Y ;Z)− I
(
Ŷ ;Z

)
+ (8R1 + 8R3 + 26)ε,

(75)

when n is sufficiently large. Without any rate limitation on
the public channel, we can choose the transition probability
p( ŷ | y) such that I(Y ;Z)− I(Ŷ ;Z) ≤ ε; therefore,

1
n
I(K ;Zn, J) ≤ (8R1 + 8R3 + 27)ε. (76)

Since ε > 0 can be chosen arbitrarily, Part (1) of Lemma 6,
(72), and (76), establish the achievability of the secret key
rate I(Y ;X)− I(Y ;Z).
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5. Conclusion

We evaluated the key capacity of the fast-fading MIMO wire-
tap channel. We found that spatial dimensionality provided
by the use of multiple antennas at the source and destination
can be employed to combat a channel-gain advantage of
the eavesdropper over the destination. In particular if the
source has more antennas than the eavesdropper, then
the channel gain advantage of the eavesdropper can be
completely overcome in the sense that the key capacity does
not vanish when the eavesdropper channel gain advantage
becomes asymptotically large. This is the most interesting
observation of this paper, as no eavesdropper CSI is needed
at the source or destination to achieve the non-vanishing key
capacity.
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