344 research outputs found

    Carbon Nanotube-Mediated Labelling Platforms for Stem Cells

    Get PDF

    Sequenceserver: A Modern Graphical User Interface for Custom BLAST Databases

    Get PDF
    Comparing newly obtained and previously known nucleotide and amino-acid sequences underpins modern biological research. BLAST is a well-established tool for such comparisons but is challenging to use on new data sets. We combined a user-centric design philosophy with sustainable software development approaches to create Sequenceserver, a tool for running BLAST and visually inspecting BLAST results for biological interpretation. Sequenceserver uses simple algorithms to prevent potential analysis errors and provides flexible text-based and visual outputs to support researcher productivity. Our software can be rapidly installed for use by individuals or on shared servers

    Collagen fleeces do not improve colonic anastomotic strength but increase bowel obstructions in an experimental rat model

    Get PDF
    To investigate whether a collagen fleece kept in place by fibrin glue might seal off a colorectal anastomosis, provide reinforcement, and subsequently improve anastomotic healing. Wistar rats underwent a 1-cm left-sided colonic resection followed by a 4-suture end-to-end anastomosis. They were then randomly assigned to one of three treatment groups: no additional intervention (control, n = 20), the anastomosis covered with fibrin glue (fibrin glue, n = 20), the anastomosis covered with a collagen fleece, kept in place with fibrin glue (collagen fleece, n = 21). At either 3 or 7 days follow-up, anastomotic bursting pressure was measured and tissue was obtained for histology and collagen content assessment after which animals were sacrificed. Three rats in the control (15%), three in the fibrin glue (15%), and one in the collagen group (4.8%) died due to anastomotic complications (P = 0.497). Anastomotic bursting pressures were not significantly different between groups at 3 and 7 days follow-up (P = 0.659 and P = 0.427, respectively). However, bowel obstructions occurred significantly more often in the collagen group compared to the control group (14/21 vs. 3/20, P = 0.003). Collagen contents were not different between groups, but histology showed a more severe inflammation in the collagen group compared to the other groups at both 3 and 7 days follow-up. A collagen fleece kept in place by fibrin glue does not improve healing of colonic anastomoses in rats. Moreover, this technique induces significantly more bowel obstructions in rats, warranting further study before being translated to a clinical settin

    Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE

    Get PDF
    Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE

    Volumetric imaging with homogenised excitation and static field at 9.4 T

    Get PDF
    Objectives: To overcome the challenges of B and RF excitation inhomogeneity at ultra-high field MRI, a workflow for volumetric B and flip-angle homogenisation was implemented on a human 9.4 T scanner. Materials and methods: Imaging was performed with a 9.4 T human MR scanner (Siemens Medical Solutions, Erlangen, Germany) using a 16-channel parallel transmission system. B- and B-mapping were done using a dual-echo GRE and transmit phase-encoded DREAM, respectively. B shims and a small-tip-angle-approximation kT-points pulse were calculated with an off-line routine and applied to acquire T- and T -weighted images with MPRAGE and 3D EPI, respectively. Results: Over six in vivo acquisitions, the B-distribution in a region-of-interest defined by a brain mask was reduced down to a full-width-half-maximum of 0.10\ua0±\ua00.01\ua0ppm (39\ua0±\ua02\ua0Hz). Utilising the kT-points pulses, the normalised RMSE of the excitation was decreased from CP-mode’s 30.5\ua0±\ua00.9 to 9.2\ua0±\ua00.7\ua0% with all B \ua0voids eliminated. The SNR inhomogeneities and contrast variations in the T- and T -weighted volumetric images were greatly reduced which led to successful tissue segmentation of the T-weighted image. Conclusion: A 15-minute B- and flip-angle homogenisation workflow, including the B- and B-map acquisitions, was successfully implemented and enabled us to reduce intensity and contrast variations as well as echo-planar image distortions in 9.4 T images

    The EMBRACE web service collection

    Get PDF
    The EMBRACE (European Model for Bioinformatics Research and Community Education) web service collection is the culmination of a 5-year project that set out to investigate issues involved in developing and deploying web services for use in the life sciences. The project concluded that in order for web services to achieve widespread adoption, standards must be defined for the choice of web service technology, for semantically annotating both service function and the data exchanged, and a mechanism for discovering services must be provided. Building on this, the project developed: EDAM, an ontology for describing life science web services; BioXSD, a schema for exchanging data between services; and a centralized registry (http://www.embraceregistry.net) that collects together around 1000 services developed by the consortium partners. This article presents the current status of the collection and its associated recommendations and standards definitions
    corecore