20 research outputs found

    Unexpected Intermediate Nerve Conduction Velocity Findings in Charcot-Marie-Tooth Syndromes Classified as Demyelinated or Axonal in a Pediatric Population

    No full text
    International audienceIntroduction: Among the hereditary motor and sensory neuropathies (HMSN), demyelinating forms are the best characterized, with a clear predominance of CMT1A. The axonal and intermediate forms are less described. The aim of this study is to report the genetic diagnosis of Charcot-Marie-Tooth (CMT) according to the nerve conduction velocity (NCV) findings in a pediatric population.Methods: We retrospectively described a population of HMSN children with a confirmed genetic diagnosis of demyelinated, intermediate, or axonal forms. We compared the results of the genetic analyses with those of motor NCV in median nerve according to whether they were below 25 m/s (demyelinating group); between 25 and 45 m/s (intermediate group), or above 45 m/s (axonal group).Results: Among the 143 children with an HMSN, 107 had a genetic diagnosis of which 61 had an electromyogram. On NCV findings: seven (11%) pertain to the axonal group, 20 (32%) to the intermediate group, and 34 (55%) to the demyelinating group. When NCV was above 45 m/s, CMT2A was the predominant genetic diagnosis (70%) when NCV were below 25 m/s, CMT1A was the predominant genetic diagnosis (71%). Intermediate NCV findings group was the more heterogeneous with seven genetic CMT subgroups (60% CMT1A, CMT1B, CMT1X, CMT2A, CMT2N, CMT4G).Conclusion: Taking NCV values between 25 and 45 m/s to define an intermediate group of CMT in children leads to the inclusion of non-typically “intermediate”, especially CMT1A. We emphasize the broad spectrum of NCV in CMT1A that justified the systematic search of PMP22 duplication/deletion screening before next generation sequencing panel

    Confirmatory validation of the french version of the Duchenne Muscular Dystrophy module of the pediatric quality of life inventory (PedsQLTM3.0DMDfv)

    No full text
    Duchenne Muscular Dystrophy (DMD) is a neuromuscular disease that inevitably leads to total loss of autonomy. The new therapeutic strategies aim to both improve survival and optimise quality of life. Evaluating quality of life is nevertheless a major challenge. No DMD-specific quality of life scale to exists in French. We therefore produced a French translation of the English Duchenne Muscular Dystrophy module of the Pediatric Quality of Life Inventory (PedsQL TM DMD) following international recommendations. The study objective was to carry out a confirmatory validation of the French version of the PedsQL TM DMD for paediatric patients with DMD, using French multicentre descriptive cross-sectional data. The sample consisted of 107 patients. Internal consistency was acceptable for proxyassessments, with Cronbach's alpha coefficients above 0.70, except for the Treatment dimension. For self-assessments, internal consistency was acceptable only for the Daily Activities dimension. Our results showed poor metric qualities for the French version of the PedsQL TM DMD based on a sample of about 100 children, but these results remained consistent with those of the original validation. This confirms the interest of its use in clinical practice

    A new score combining compound muscle action potential (CMAP) amplitudes and motor score is predictive of motor outcome after AVXS-101 (Onasemnogene Abeparvovec) SMA therapy

    No full text
    International audienceSpinal muscular atrophy 1 (SMA1) is a severe early genetic disease with degeneration of motor neurons. Motor development is still suboptimal after gene replacement therapy in symptomatic patients. In this study, compound muscle action potential (CMAP) amplitudes were explored as predictors of motor recovery after gene therapy. Thirteen symptomatic SMA1 patients were prospectively included at the Necker Enfants Malades Hospital, Paris, France (Cohort 1) and 12 at the other pediatric neuromuscular reference centers of the French Filnemus network (Cohort 2). In Cohort 1, median CMAP amplitudes showed the best improvement between baseline and the 12 months visit compared to the other tested nerves (ulnar, fibular and tibial). High median CMAP amplitudes at baseline was associated with unaided sitting achievement at M6 (AUC 90%). None of the patients with CHOPINTEND at M0 < 30/64 and median CMAP < 0.5 mV achieved unaided sitting at M6 and this result was confirmed on Cohort 2 used as an independent validation data. Thus, median CMAP amplitude is a valid biomarker for routine practice to predict sitting at M6. A median CMAP amplitude over 0.5 mV at baseline may predict better motor recovery

    Palliative Care in SMA Type 1: A Prospective Multicenter French Study Based on Parents' Reports

    Get PDF
    International audienceSpinal muscular atrophy type 1 (SMA-1) is a severe neurodegenerative disorder, which in the absence of curative treatment, leads to death before 1 year of age in most cases. Caring for these short-lived and severely impaired infants requires palliative management. New drugs (nusinersen) have recently been developed that may modify SMA-1 natural history and thus raise ethical concerns about the appropriate level of care for patients. The national Hospital Clinical Research Program (PHRC) called "Assessment of clinical practices of palliative care in children with Spinal Muscular Atrophy Type 1 (SMA-1)" was a multicenter prospective study conducted in France between 2012 and 2016 to report palliative practices in SMA-1 in real life through prospective caregivers' reports about their infants' management. Thirty-nine patients were included in the prospective PHRC (17 centers). We also studied retrospective data regarding management of 43 other SMA-1 patients (18 centers) over the same period, including seven treated with nusinersen, in comparison with historical data from 222 patients previously published over two periods of 10 years (1989-2009). In the latest period studied, median age at diagnosis was 3 months [0.6-10.4]. Seventy-seven patients died at a median 6 months of age[1-27]: 32% at home and 8% in an intensive care unit. Eighty-five percent of patients received enteral nutrition, some through a gastrostomy (6%). Sixteen percent had a non-invasive ventilation (NIV). Seventy-seven percent received sedative treatment at the time of death. Over time, palliative management occurred more frequently at home with increased levels of technical supportive care (enteral nutrition, oxygenotherapy, and analgesic and sedative treatments). No statistical difference was found between the prospective and retrospective patients for the last period. However, significant differences were found between patients treated with nusinersen vs. those untreated. Our data confirm that palliative care is essential in management of SMA-1 patients and that parents are extensively involved in everyday patient care. Our data suggest that nusinersen treatment was accompanied by significantly more invasive supportive care, indicating that a re-examination of standard clinical practices should explicitly consider what treatment pathways are in infants' and caregivers' best interest. This study was registered on clinicaltrials.gov under the reference NCT01862042 (https://clinicaltrials.gov/ct2/show/study/NCT01862042?cond=SMA1&rank=8)

    An Integrated Clinical-Biological Approach to Identify Interindividual Variability and Atypical Phenotype-Genotype Correlations in Myopathies: Experience on A Cohort of 156 Families

    No full text
    International audienceDiagnosis of myopathies is challenged by the high genetic heterogeneity and clinical overlap of the various etiologies. We previously reported a Next-Generation Sequencing strategy to identify genetic etiology in patients with undiagnosed Limb-Girdle Muscular Dystrophies, Congenital Myopathies, Congenital Muscular Dystrophies, Distal Myopathies, Myofibrillar Myopathies, and hyperCKemia or effort intolerance, using a large gene panel including genes classically associated with other entry diagnostic categories. In this study, we report the comprehensive clinical-biological strategy used to interpret NGS data in a cohort of 156 pediatric and adult patients, that included Copy Number Variants search, variants filtering and interpretation according to ACMG guidelines, segregation studies, deep phenotyping of patients and relatives, transcripts and protein studies, and multidisciplinary meetings. Genetic etiology was identified in 74 patients, a diagnostic yield (47.4%) similar to previous studies. We identified 18 patients (10%) with causative variants in different genes (ACTA1, RYR1, NEB, TTN, TRIP4, CACNA1S, FLNC, TNNT1, and PAPBN1) that resulted in milder and/or atypical phenotypes, with high intrafamilial variability in some cases. Mild phenotypes could mostly be explained by a less deleterious effect of variants on the protein. Detection of inter-individual variability and atypical phenotype-genotype associations is essential for precision medicine, patient care, and to progress in the understanding of the molecular mechanisms of myopathies
    corecore