7 research outputs found

    The use of benzil to obtain functionalized N-heterocycles

    Full text link
    In this work, the reactivity of benzil was studied, employing C, N- and N, N-nucleophiles, such as ethyl(3-amino substituted) 2-butenoates 4a-c , (S, Z)-ethyl 3-(1-ethoxy-3-hydroxy-1-oxopropan-2-ylamino)but-2-enoate 6, semicarbazide 8 or thiosemicarbazide 10, to evaluate their electrophilic centers as building blocks for the synthesis of the polyfunctionalized heterocyclic compounds, resulting in pyrrolinone 5a-c, pyrrole 7, triazinone 9 and triazinethione 11. The employed benzil 3 was obtained by the oxidation of the benzoin under solvent free conditions in a comparative study between different protocols of oxidation, using the methodology under mild reaction conditions and supported reagent associated to the microwave irradiation, with good results and without aggressive reagents

    Oxidation of mono-phenols to para-benzoquinones: a comparative study

    Full text link
    The oxidation of mono-phenols to para-benzoquinones is of continuing interest due to the existence of numerous natural products containing this structural unit. The chemical reactivity of para-benzoquinones is also noteworthy, as oxidants and dienophiles in the Diels-Alder reaction. We have used for quite some time now, molecular oxygen and catalysis with [CoII(salen)] as the oxidation procedure, but felt the need for other oxidants and conditions to be of use with different phenol substrates. We now present our results on this important oxidation with a variety of oxidants, using eleven mono-phenols as substrates. The oxidants tested are cobalt, nickel, copper and vanadyl metals, with a selection of different salen type ligands. Completing this study we also investigated the use of hydrogen peroxide, OXONE®, dimethyl dioxirane and iodoxybenzoic acid

    Antinociceptive Activity of Thymoquinone and its Structural Analogues: A Structure-Activity Relationship Study

    No full text
    Purpose: To investigate the structural features that influence the antinociceptive activity of thymoquinone and their structural analogues. Methods: The quinones were prepared by an oxidation procedure using molecular oxygen and catalysis with [CoII(salen)] from the respective phenols. The antinociceptive activity of para-benzoquinones (10 mg/kg, ip) was evaluated using formalin test in mice. Vehicle (5 % Tween 80) or morphine (10 mg/kg) were used as control group and standard drug, respectively. The amount of time spent licking the injected paw was considered as the nociceptive response. Results: Among the compounds tested, five para-benzoquinones showed antinociceptive activity. The 2-isopropyl-para-benzoquinone presented the highest potency in first and second phases and produced a near-maximal inhibition (p < 0.001) in the formalin test, similar to morphine (p < 0.001). Conclusion: Our experimental results show that by appropriate structural modification of parabenzoquinones it may be possible to develop novel analgesic drugs

    Antimicrobial Photodynamic Therapy against Endodontic Enterococcus faecalis and Candida albicans Mono and Mixed Biofilms in the Presence of Photosensitizers: A Comparative Study with Classical Endodontic Irrigants

    Get PDF
    Endodontic biofilms eradication from the infected root canal system remains as the primary focus in endodontic field. In this study, it was assessed the efficacy of antimicrobial Photodynamic Therapy (aPDT) with the Zn(II)chlorin e6 methyl ester (Zn(II)e6Me) activated by red light against monospecies and mixed biofilms of Enterococcus faecalis and Candida albicans. The results were compared with the ones obtained with Rose Bengal (RB), Toluidine Blue-O (TBO), the synthetic tetracationic porphyrin (TMPyP) as well as classical endodontic irrigants (3% NaOCl, 17% EDTA and 2% CHX). The antimicrobial efficacy of aPDT toward monospecies and mixed biofilms was quantified resorting to safranin red method. The changes of biofilm organization and of cellular ultrastructure were evaluated through several microscopy techniques (light, laser confocal and transmission electron microscopy). Zn(II)e6Me once activated with light for 60 or 90 s was able to remove around 60% of the biofilm's biomass. It was more efficient than TBO and RB and showed similar efficiency to TMPyP and classical irrigants, CHX and EDTA. As desirable in a PS, Zn(II)e6Me in the dark showed smaller activity than TMPyP. Only NaOCl revealed higher efficiency, with 70-90% of the biofilm's biomass removal. The organization of biofilms and the normal microbial cell ultrastructure were extensively damaged by the presence of Zn(II)e6Me. aPDT with Zn(II)e6Me showed to be an efficient antimicrobial strategy deserving further studies leading to a future clinical usage in endodontic disinfection
    corecore