284 research outputs found

    Contribution of mixing to the upward transport across the TTL

    Get PDF
    During the second part of the TROCCINOX campaign that took place in Brazil in early 2005, chemical species were measured on-board of the high altitude research aircraft Geophysica (ozone, water vapor, NO, NOy, CH4 and CO) in the altitude range up to 20 km (or up to 450 K potential temperature), i.e. spanning the TTL region roughly extending between 350 and 420 K. Analysis of transport across TTL is performed using a new version of the Chemical Lagrangian Model of the Stratosphere (CLaMS). In this new version, the stratospheric model has been extended to the earth surface. Above the tropopause, the isentropic and cross-isentropic advection in CLaMS is driven by ECMWF winds and heating/cooling rates derived from a radiation calculation. Below the tropopause the model smoothly transforms from the isentropic to hybrid-pressure coordinate and, in this way, takes into account the effect of large-scale convective transport as implemented in the ECMWF vertical wind. As with other CLaMS simulations, the irreversible transport, i.e. mixing, is controlled by the local horizontal strain and vertical shear rates. Stratospheric and tropospheric signatures in the TTL can be seen both in the observation and in the model. The composition of air above ≈350 K is mainly controlled by mixing on a time scale of weeks or even months. Based on CLaMS transport studies where mixing can be completely switched off, we deduce that vertical mixing, mainly driven by the vertical shear in the outflow regions of the large-scale convection and in the vicinity of the subtropical jets, is necessary to understand the upward transport of the tropospheric air from the main convective outflow around 350 K up to the tropical tropopause around 380 K. This mechanism is most effective if the outflow of the mesoscale convective systems interacts with the subtropical jets

    Contribution of mixing to the upward transport across the TTL

    Get PDF
    During the second part of the TROCCINOX campaign that took place in Brazil in early 2005, chemical species were measured on-board of the high altitude research aircraft Geophysica (ozone, water vapor, NO, NOy, CH4 and CO) in the altitude range up to 20 km (or up to 450 K potential temperature), i.e. spanning the TTL region roughly extending between 350 and 420 K. Analysis of transport across TTL is performed using a new version of the Chemical Lagrangian Model of the Stratosphere (CLaMS). In this new version, the stratospheric model has been extended to the earth surface. Above the tropopause, the isentropic and cross-isentropic advection in CLaMS is driven by ECMWF winds and heating/cooling rates derived from a radiation calculation. Below the tropopause the model smoothly transforms from the isentropic to hybrid-pressure coordinate and, in this way, takes into account the effect of large-scale convective transport as implemented in the ECMWF vertical wind. As with other CLaMS simulations, the irreversible transport, i.e. mixing, is controlled by the local horizontal strain and vertical shear rates. Stratospheric and tropospheric signatures in the TTL can be seen both in the observation and in the model. The composition of air above ≈350 K is mainly controlled by mixing on a time scale of weeks or even months. Based on CLaMS transport studies where mixing can be completely switched off, we deduce that vertical mixing, mainly driven by the vertical shear in the outflow regions of the large-scale convection and in the vicinity of the subtropical jets, is necessary to understand the upward transport of the tropospheric air from the main convective outflow around 350 K up to the tropical tropopause around 380 K. This mechanism is most effective if the outflow of the mesoscale convective systems interacts with the subtropical jets

    Contribution of mixing to upward transport across the tropical tropopause layer (TTL)

    Get PDF
    During the second part of the TROCCINOX campaign that took place in Brazil in early 2005, chemical species were measured on-board the high-altitude research aircraft Geophysica (ozone, water vapor, NO, NOy, CH4 and CO) in the altitude range up to 20 km (or up to 450 K potential temperature), i.e. spanning the entire TTL region roughly extending between 350 and 420 K. Here, analysis of transport across the TTL is performed using a new version of the Chemical Lagrangian Model of the Stratosphere (CLaMS). In this new version, the stratospheric model has been extended to the earth surface. Above the tropopause, the isentropic and cross-isentropic advection in CLaMS is driven by meteorological analysis winds and heating/cooling rates derived from a radiation calculation. Below the tropopause, the model smoothly transforms from the isentropic to the hybrid-pressure coordinate and, in this way, takes into account the effect of large-scale convective transport as implemented in the vertical wind of the meteorological analysis. As in previous CLaMS simulations, the irreversible transport, i.e. mixing, is controlled by the local horizontal strain and vertical shear rates. Stratospheric and tropospheric signatures in the TTL can be seen both in the observations and in the model. The composition of air above ≈350 K is mainly controlled by mixing on a time scale of weeks or even months. Based on CLaMS transport studies where mixing can be completely switched off, we deduce that vertical mixing, mainly driven by the vertical shear in the tropical flanks of the subtropical jets and, to some extent, in the the outflow regions of the large-scale convection, offers an explanation for the upward transport of trace species from the main convective outflow at around 350 K up to the tropical tropopause around 380 K

    Aerosols in the tropical and subtropical UT/LS: in-situ measurements of submicron particle abundance and volatility

    Get PDF
    Processes occurring in the tropical upper troposphere (UT), the Tropical Transition Layer (TTL), and the lower stratosphere (LS) are of importance for the global climate, for stratospheric dynamics and air chemistry, and for their influence on the global distribution of water vapour, trace gases and aerosols. In this contribution we present aerosol and trace gas (in-situ) measurements from the tropical UT/LS over Southern Brazil, Northern Australia, and West Africa. The instruments were operated on board of the Russian high altitude research aircraft M-55 "Geophysica" and the DLR Falcon-20 during the campaigns TROCCINOX (Araçatuba, Brazil, February 2005), SCOUT-O3 (Darwin, Australia, December 2005), and SCOUT-AMMA (Ouagadougou, Burkina Faso, August 2006). The data cover submicron particle number densities and volatility from the COndensation PArticle counting System (COPAS), as well as relevant trace gases like N2O, ozone, and CO. We use these trace gas measurements to place the aerosol data into a broader atmospheric context. Also a juxtaposition of the submicron particle data with previous measurements over Costa Rica and other tropical locations between 1999 and 2007 (NASA DC-8 and NASA WB-57F) is provided. The submicron particle number densities, as a function of altitude, were found to be remarkably constant in the tropical UT/LS altitude band for the two decades after 1987. Thus, a parameterisation suitable for models can be extracted from these measurements. Compared to the average levels in the period between 1987 and 2007 a slight increase of particle abundances was found for 2005/2006 at altitudes with potential temperatures, theta, above 430 K. The origins of this increase are unknown except for increases measured during SCOUT-AMMA. Here the eruption of the Soufrière Hills volcano in the Caribbean caused elevated particle mixing ratios. The vertical profiles from Northern hemispheric mid-latitudes between 1999 and 2006 also are compact enough to derive a parameterisation. The tropical profiles all show a broad maximum of particle mixing ratios (between theta ~ 340 K and 390 K) which extends from below the TTL to above the thermal tropopause. Thus these particles are a "reservoir" for vertical transport into the stratosphere. The ratio of non-volatile particle number density to total particle number density was also measured by COPAS. The vertical profiles of this ratio have a maximum of 50% above 370 K over Australia and West Africa and a pronounced minimum directly below. Without detailed chemical composition measurements a reason for the increase of non-volatile particle fractions cannot yet be given. However, half of the particles from the tropical "reservoir" contain compounds other than sulphuric acid and water. Correlations of the measured aerosol mixing ratios with N2O and ozone exhibit compact relationships for the tropical data from SCOUT-AMMA, TROCCINOX, and SCOUT-O3. Correlations with CO are more scattered probably because of the connection to different pollution source regions. We provide additional data from the long distance transfer flights to the campaign sites in Brazil, Australia, and West-Africa. These were executed during a time window of 17 months within a period of relative volcanic quiescence. Thus the data represent a "snapshot picture" documenting the status of a significant part of the global UT/LS fine aerosol at low concentration levels 15 years after the last major (i.e., the 1991 Mount Pinatubo) eruption. The corresponding latitudinal distributions of the measured particle number densities are presented in this paper to provide data of the UT/LS background aerosol for modelling purposes

    Contribution of mixing to the upward transport across the TTL

    No full text
    International audienceDuring the second part of the TROCCINOX campaign that took place in Brazil in early 2005, chemical species were measured on-board of the high altitude research aircraft Geophysica (ozone, water vapor, NO, NOy, CH4 and CO) in the altitude range up to 20 km (or up to 450 K potential temperature), i.e. spanning the TTL region roughly extending between 350 and 420 K. Analysis of transport across TTL is performed using a new version of the Chemical Lagrangian Model of the Stratosphere (CLaMS). In this new version, the stratospheric model has been extended to the earth surface. Above the tropopause, the isentropic and cross-isentropic advection in CLaMS is driven by ECMWF winds and heating/cooling rates derived from a radiation calculation. Below the tropopause the model smoothly transforms from the isentropic to hybrid-pressure coordinate and, in this way, takes into account the effect of large-scale convective transport as implemented in the ECMWF vertical wind. As with other CLaMS simulations, the irreversible transport, i.e. mixing, is controlled by the local horizontal strain and vertical shear rates. Stratospheric and tropospheric signatures in the TTL can be seen both in the observation and in the model. The composition of air above ?350 K is mainly controlled by mixing on a time scale of weeks or even months. Based on CLaMS transport studies where mixing can be completely switched off, we deduce that vertical mixing, mainly driven by the vertical shear in the outflow regions of the large-scale convection and in the vicinity of the subtropical jets, is necessary to understand the upward transport of the tropospheric air from the main convective outflow around 350 K up to the tropical tropopause around 380 K. This mechanism is most effective if the outflow of the mesoscale convective systems interacts with the subtropical jets

    In situ measurements of tropical cloud properties in the West African Monsoon: upper tropospheric ice clouds, Mesoscale Convective System outflow, and subvisual cirrus

    Get PDF
    In situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS) clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100) and a Cloud Imaging Probe (CIP) operated aboard the Russian high altitude research aircraft M-55 Geophysica with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS). Two to four modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionately more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NOy, CO2, CO, and O3 and satellite images, clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow from a developing MCS ice crystal number concentrations of up to (8.3 ± 1.6) cm−3 and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m−3 was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm−3, an ice water content of 2.3 × 10−4 g m−3, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm. Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm−3 with maximum particle sizes of 130 μm, and the mean ice water content was about 1.4 × 10−4 g m−3. All known in situ measurements of subvisual tropopause cirrus are compared and an exponential fit on the size distributions is established for modelling purposes. A comparison of aerosol to ice crystal number concentrations, in order to obtain an estimate on how many ice particles may result from activation of the present aerosol, yielded low ratios for the subvisual cirrus cases of roughly one cloud particle per 30 000 aerosol particles, while for the MCS outflow cases this resulted in a high ratio of one cloud particle per 300 aerosol particles

    Fast Detection of Unexpected Sound Intensity Decrements as Revealed by Human Evoked Potentials

    Get PDF
    The detection of deviant sounds is a crucial function of the auditory system and is reflected by the automatically elicited mismatch negativity (MMN), an auditory evoked potential at 100 to 250 ms from stimulus onset. It has recently been shown that rarely occurring frequency and location deviants in an oddball paradigm trigger a more negative response than standard sounds at very early latencies in the middle latency response of the human auditory evoked potential. This fast and early ability of the auditory system is corroborated by the finding of neurons in the animal auditory cortex and subcortical structures, which restore their adapted responsiveness to standard sounds, when a rare change in a sound feature occurs. In this study, we investigated whether the detection of intensity deviants is also reflected at shorter latencies than those of the MMN. Auditory evoked potentials in response to click sounds were analyzed regarding the auditory brain stem response, the middle latency response (MLR) and the MMN. Rare stimuli with a lower intensity level than standard stimuli elicited (in addition to an MMN) a more negative potential in the MLR at the transition from the Na to the Pa component at circa 24 ms from stimulus onset. This finding, together with the studies about frequency and location changes, suggests that the early automatic detection of deviant sounds in an oddball paradigm is a general property of the auditory system

    Repertoires of the Nucleosome-Positioning Dinucleotides

    Get PDF
    It is generally accepted that the organization of eukaryotic DNA into chromatin is strongly governed by a code inherent in the genomic DNA sequence. This code, as well as other codes, is superposed on the triplets coding for amino acids. The history of the chromatin code started three decades ago with the discovery of the periodic appearance of certain dinucleotides, with AA/TT and RR/YY giving the strongest signals, all with a period of 10.4 bases. Every base-pair stack in the DNA duplex has specific deformation properties, thus favoring DNA bending in a specific direction. The appearance of the corresponding dinucleotide at the distance 10.4 xn bases will facilitate DNA bending in that direction, which corresponds to the minimum energy of DNA folding in the nucleosome. We have analyzed the periodic appearances of all 16 dinucleotides in the genomes of thirteen different eukaryotic organisms. Our data show that a large variety of dinucleotides (if not all) are, apparently, contributing to the nucleosome positioning code. The choice of the periodical dinucleotides differs considerably from one organism to another. Among other 10.4 base periodicities, a strong and very regular 10.4 base signal was observed for CG dinucleotides in the genome of the honey bee A. mellifera. Also, the dinucleotide CG appears as the only periodical component in the human genome. This observation seems especially relevant since CpG methylation is well known to modulate chromatin packing and regularity. Thus, the selection of the dinucleotides contributing to the chromatin code is species specific, and may differ from region to region, depending on the sequence context
    corecore