52 research outputs found

    Radial transport of radiation belt electrons due to stormtime Pc5 waves

    Get PDF
    During geomagnetic storms relativistic electron fluxes in the outer radiation belt exhibit dynamic variability over multiple orders of magnitude. This requires radial transport of electrons across their drift shells and implies violation of their third adiabatic invariant. Radial transport is induced by the interaction of the electron drift motion with electric and magnetic field fluctuations in the ULF frequency range. It was previously shown that solar-wind driven ULF waves have long azimuthal wave lengths and thus can violate the third invariant of trapped electrons in the process of resonant interaction with their gradient-curvature motion. However, the amplitude of solar-wind driven ULF waves rapidly decreases with decreasing <I>L</I>. It is therefore not clear what mechanisms are responsible for fast transport rates observed inside the geosynchronous orbit. In this paper we investigate wether stormtime Pc5 waves can contribute to this process. Stormtime Pc5s have short azimuthal wave lengths and therefore cannot exhibit resonance with the the electron drift motion. However we show that stormtime Pc5s can cause localized random scattering of electron drift motion that violates the third invariant. According to our results electron interaction with stormtime Pc5s can produce rapid radial transport even as low as <I>L</I>≃4. Numerical simulations show that electron transport can exhibit large deviations from radial diffusion. The diffusion approximation is not valid for individual storms but only applies to the statistically averaged response of the outer belt to stormtime Pc5 waves

    The Role of Mesoscale Plasma Sheet Dynamics in Ring Current Formation

    Get PDF
    During geomagnetically active periods ions are transported from the magnetotail into the inner magnetosphere and accelerated to energies of tens to hundreds of keV. These energetic ions, of mixed composition with the most important species being H+ and O+, become the dominant source of plasma pressure in the inner magnetosphere. Ion transport and acceleration can occur at different spatial and temporal scales ranging from global quasi-steady convection to localized impulsive injection events and may depend on the ion gyroradius. In this study we ascertain the relative importance of mesoscale flow structures and the effects of ion non-adiabaticity on the produced ring current. For this we use: global magnetohydrodynamic (MHD) simulations to generate self-consistent electromagnetic fields under typical driving conditions which exhibit bursty bulk flows (BBFs); and injected test particles, initialized to match the plasma moments of the MHD simulation, and subsequently evolved according to the kinetic equations of motion. We show that the BBFs produced by our simulation reproduce thermodynamic and magnetic statistics from in situ measurements and are numerically robust. Mining the simulation data we create a data set, over a billion points, connecting particle transport to characteristics of the MHD flow. From this we show that mesoscale bubbles, localized depleted entropy regions, and particle gradient drifts are critical for ion transport. Finally we show, using identical particle ensembles with varying mass, that O+ non-adiabaticity creates qualitative differences in energization and spatial distribution while H+ non-adiabaticity has non-negligible implications for loss timescales

    Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen Probes observations

    Get PDF
    Abstract We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch angle scattering of relativistic and ultrarelativistic electrons during the recovery phase of a moderate geomagnetic storm on 11 October 2012. The EMIC wave activity was observed in situ on the Van Allen Probes and conjugately on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity throughout an extended 18 h interval. However, neither enhanced precipitation of \u3e0.7 MeV electrons nor reductions in Van Allen Probe 90° pitch angle ultrarelativistic electron flux were observed. Computed radiation belt electron pitch angle diffusion rates demonstrate that rapid pitch angle diffusion is confined to low pitch angles and cannot reach 90°. For the first time, from both observational and modeling perspectives, we show evidence of EMIC waves triggering ultrarelativistic (~2-8 MeV) electron loss but which is confined to pitch angles below around 45° and not affecting the core distribution. Key Points EMIC wave activity is not associated with precipitation of MeV electrons EMIC waves do not deplete the ultra-relativistic belt down to 90° EMIC waves cause loss of low pitch angle electrons with energies ~2-8 MeV

    High-resolution in situ observations of electron precipitation-causing EMIC waves

    Get PDF
    Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based observations of the EMIC-induced electron precipitation. In a detailed case study, supplemented by an additional four examples, we are able to constrain for the first time the location, size, and energy range of EMIC-induced electron precipitation inferred from coincident precipitation data and relate them to the EMIC wave frequency, wave power, and ion band of the wave as measured in situ by the Van Allen Probes. These observations will better constrain modeling into the importance of EMIC wave-particle interactions

    Disappearance of plasmaspheric hiss following interplanetary shock

    Get PDF
    Abstract Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetopause removed the source electrons for chorus, contributing significantly to the several-hours-long disappearance of plasmaspheric hiss

    Observations of coincident EMIC wave activity and dusk-side energetic electron precipitation on 18-19 January 2013

    Get PDF
    Electromagnetic ion cyclotron (EMIC) waves have been suggested to be a cause of radiation belt electron loss to the atmosphere. Here simultaneous, magnetically conjugate measurements are presented of EMIC wave activity, measured at geosynchronous orbit and on the ground, and energetic electron precipitation, seen by the BARREL balloon campaign, on two consecutive days in January 2013. Multiple bursts of precipitation were observed on the dusk-side of the magnetosphere at the end of 18 Jan and again late on 19 Jan, concurrent with particle injections, substorm activity, and enhanced magnetospheric convection. The structure, timing, and spatial extent of the waves are compared to those of the precipitation during both days to determine when and where EMIC waves cause radiation belt electron precipitation. The conjugate measurements presented here provide observational support of the theoretical picture of dusk-side interaction of EMIC waves and MeV electrons leading to radiation belt loss

    New Frontiers-class Uranus Orbiter: Exploring the feasibility of achieving multidisciplinary science with a mid-scale mission

    Get PDF
    n/

    Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

    Get PDF
    Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave–particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. Using a data driven, time-dependent specification of ultra-low-frequency (ULF) waves we show for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave–particle scattering loss into the atmosphere is not needed in this case. When rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explaine
    • …
    corecore