45 research outputs found

    Novel genetic risk factors for venous thrombosis; a haplotype-based candidate gene approach

    Get PDF
    Venous thrombosis (VT) is a common disease, which occurs mostly in the deep veins of the leg. VT clusters within families and is a multicausal disease, in which both genetic and environmental factors interact in the onset of the disease. The aim of the study described in this thesis was to find new genetic risk factors for VT. To identify these new genetic risk factors, we used a haplotype-based candidate gene approach. The main hypothesis of this approach was that relatively common functional variants exist that are the product of unique mutational events in a founder haplotype and that the frequency of such haplotypes will be increased in a patient population. In this thesis, candidate genes were selected on the basis of theoretical knowledge of the proteins encoded by the genes. The candidate gene investigated are the Endothelial cell Protein C Receptor (EPCR) (Chapter 2), Fibrinogen (Chapter 3), and the genes of the selectin family (E-selectin (SELE), L-selectin (SELL) and P-selectin (SELP)) and their most important counter-receptor P-selectin ligand (PSGL-1). The results described in this thesis may contribute to a better understanding of the etiology of VT.Venous thrombosis (VT) is a common disease, which occurs mostly in the deep veins of the leg. VT clusters within families and is a multicausal disease, in which both genetic and environmental factors interact in the onset of the disease. The aim of the study described in this thesis was to find new genetic risk factors for VT. To identify these new genetic risk factors, we used a haplotype-based candidate gene approach. The main hypothesis of this approach was that relatively common functional variants exist that are the product of unique mutational events in a founder haplotype and that the frequency of such haplotypes will be increased in a patient population. In this thesis, candidate genes were selected on the basis of theoretical knowledge of the proteins encoded by the genes. The candidate gene investigated are the Endothelial cell Protein C Receptor (EPCR) (Chapter 2), Fibrinogen (Chapter 3), and the genes of the selectin family (E-selectin (SELE), L-selectin (SELL) and P-selectin (SELP)) and their most important counter-receptor P-selectin ligand (PSGL-1). The results described in this thesis may contribute to a better understanding of the etiology of VT.Dutch Heart Foundation, Dr. Ir. Van der Laar Stichting, J.E. Jurriaanse Stichting, EurogentecUBL - phd migration 201

    Inhibition of Fibrinolysis by Coagulation Factor XIII

    Get PDF
    The inhibitory effect of coagulation factor XIII (FXIII) on fibrinolysis has been studied for at least 50 years. Our insight into the underlying mechanisms has improved considerably, aided in particular by the discovery that activated FXIII cross-links α2-antiplasmin (α2AP) to fibrin. In this review, the most important effects of different cross-linking reactions on fibrinolysis are summarized. A distinction is made between fibrin-fibrin cross-links studied in purified systems and fibrin-α2AP cross-links studied in plasma or whole blood systems. While the formation of γ chain dimers in fibrin does not affect clot lysis, the formation of α chain polymers has a weak inhibitory effect. Only strong cross-linking of fibrin, associated with high molecular weight α chain polymers and/or γ chain multimers, results in a moderate inhibition fibrinolysis. The formation of fibrin-α2AP cross-links has only a weak effect on clot lysis, but this effect becomes strong when clot retraction occurs. Under these conditions, FXIII prevents α2AP being expelled from the clot and makes the clot relatively resistant to degradation by plasmin

    Compaction of fibrin clots reveals the antifibrinolytic effect of factor XIII

    Get PDF
    Essentials Factor XIIIa inhibits fibrinolysis by forming fibrin-fibrin and fibrin-inhibitor cross-links. Conflicting studies about magnitude and mechanisms of inhibition have been reported. Factor XIIIa most strongly inhibits lysis of mechanically compacted or retracted plasma clots. Cross-links of α2-antiplasmin to fibrin prevent the inhibitor from being expelled from the clot. Summary: Background Although insights into the underlying mechanisms of the effect of factor XIII on fibrinolysis have improved considerably in the last few decades, in particular with the discovery that activated FXIII (FXIIIa) cross-links α2-antiplasmin to fibrin, the topic remains a matter of debate. Objective To elucidate the mechanisms of the antifibrinolytic effect of FXIII. Methods and Results Platelet-poor plasma clot lysis, induced by the addition of tissue-type plasminogen activator, was measured in the presence or absence of a specific FXIIIa inhibitor. Both in a turbidity assay and in a fluorescence assay, the FXIIIa inhibitor had only a small inhibitory effect: 1.6-fold less tissue-type plasminogen activator was required for 50% clot lysis in the presence of the FXIIIa inhibitor. However, when the plasma clot was compacted by centrifugation, the FXIIIa inhibitor had a strong inhibitory effect, with 7.7-fold less tissue-type plasminogen activator being required for 50% clot lysis in the presence of the FXIIIa inhibitor. In both experiments, the effects of the FXIIIa inhibitor were entirely dependent on the cross-linking of α2-antiplasmin to fibrin. The FXIIIa inhibitor reduced the amount of α2-antiplasmin present in the compacted clots from approximately 30% to < 4%. The results were confirmed with experiments in which compaction was achieved by platelet-mediated clot retraction. Conclusions Compaction or retraction of fibrin clots reveals the strong antifibrinolytic effect of FXIII. This is explained by the cross-linking of α2-antiplasmin to fibrin by FXIIIa, which prevents the plasmin inhibitor from being fully expelled from the clot during compaction/retraction

    α−α Cross-Links Increase Fibrin Fiber Elasticity and Stiffness

    Get PDF
    Fibrin fibers, which are ∼100 nm in diameter, are the major structural component of a blood clot. The mechanical properties of single fibrin fibers determine the behavior of a blood clot and, thus, have a critical influence on heart attacks, strokes, and embolisms. Cross-linking is thought to fortify blood clots; though, the role of α–α cross-links in fibrin fiber assembly and their effect on the mechanical properties of single fibrin fibers are poorly understood. To address this knowledge gap, we used a combined fluorescence and atomic force microscope technique to determine the stiffness (modulus), extensibility, and elasticity of individual, uncross-linked, exclusively α–α cross-linked (γQ398N/Q399N/K406R fibrinogen variant), and completely cross-linked fibrin fibers. Exclusive α–α cross-linking results in 2.5× stiffer and 1.5× more elastic fibers, whereas full cross-linking results in 3.75× stiffer, 1.2× more elastic, but 1.2× less extensible fibers, as compared to uncross-linked fibers. On the basis of these results and data from the literature, we propose a model in which the α-C region plays a significant role in inter- and intralinking of fibrin molecules and protofibrils, endowing fibrin fibers with increased stiffness and elasticity

    The fibrinogen γA/γ′ isoform does not promote acute arterial thrombosis in mice

    Get PDF
    Elevated plasma fibrinogen associates with arterial thrombosis in humans and promotes thrombosis in mice by increasing fibrin formation and thrombus fibrin content. Fibrinogen is composed of six polypeptide chains: (Aα, Bβ, and γ)2. Alternative splicing of the γ chain leads to a dominant form (γA/γA) and a minor species (γA/γ’). Epidemiologic studies have detected elevated γA/γ’ fibrinogen in patients with arterial thrombosis, suggesting this isoform promotes thrombosis. However, in vitro data show that γA/γ’ is anticoagulant due to its ability to sequester thrombin, and suggest its expression is upregulated in response to inflammatory processes

    Generation and characterization of monoclonal antibodies against the N-terminus of alpha-2-antiplasmin

    Get PDF
    Around 70% of circulating alpha-2-antiplasmin (α2AP), the main natural plasmin inhibitor, is N-terminally cleaved between residues Pro12 and Asn13 by antiplasmin-cleaving enzyme. This converts native Met-α2AP into the more potent fibrinolysis inhibitor Asn-α2AP. The Arg6Trp (R6W) polymorphism affects the N-terminal cleavage rate of Met-α2AP in a purified system, with ~8-fold faster conversion of Met(R6)-α2AP than Met(W6)-α2AP. To date, assays to determine N-terminally intact Met-α2AP in plasma have been limited to an ELISA that only measures Met(R6)-α2AP. The aim of this study was to generate and characterize monoclonal antibodies (mAbs) against Met(R6)-α2AP, Met(W6)-α2AP and all α2AP forms (total-α2AP) in order to develop specific Met(R6)-α2AP and Met(W6)-α2AP ELISAs. Recombinant Met(R6)-α2AP, Met(W6)-α2AP and Asn-α2AP were expressed in Drosophila S2 cells. Using hybridoma technology, a panel of 25 mAbs was generated against a mixture of recombinant Met(R6)-α2AP and Met(W6)-α2AP. All mAbs were evaluated for their specific reactivity using the three recombinant α2APs in one-site non-competitive ELISAs. Three mAbs were selected to develop sandwich-type ELISAs. MA-AP37E2 and MA-AP34C4 were selected for their specific reactivity against Met(R6)-α2AP and Met(W6)-α2AP, respectively, and used for coating. MA-AP15D7 was selected for its reactivity against total-α2AP and used for detection. With the novel ELISAs we determined Met(R6)-α2AP and Met(W6)-α2AP levels in plasma samples and we showed that Met(R6)-α2AP was converted faster into Asn-α2AP than Met(W6)-α2AP in a plasma milieu. In conclusion, we developed two specific ELISAs for Met(R6)-α2AP and Met(W6)-α2AP, respectively, in plasma. This will enable us to determine N-terminal heterogeneity of α2AP in plasma samples

    α−α Cross-Links Increase Fibrin Fiber Elasticity and Stiffness

    Get PDF
    Fibrin fibers, which are ∼100 nm in diameter, are the major structural component of a blood clot. The mechanical properties of single fibrin fibers determine the behavior of a blood clot and, thus, have a critical influence on heart attacks, strokes, and embolisms. Cross-linking is thought to fortify blood clots; though, the role of α–α cross-links in fibrin fiber assembly and their effect on the mechanical properties of single fibrin fibers are poorly understood. To address this knowledge gap, we used a combined fluorescence and atomic force microscope technique to determine the stiffness (modulus), extensibility, and elasticity of individual, uncross-linked, exclusively α–α cross-linked (γQ398N/Q399N/K406R fibrinogen variant), and completely cross-linked fibrin fibers. Exclusive α–α cross-linking results in 2.5× stiffer and 1.5× more elastic fibers, whereas full cross-linking results in 3.75× stiffer, 1.2× more elastic, but 1.2× less extensible fibers, as compared to uncross-linked fibers. On the basis of these results and data from the literature, we propose a model in which the α-C region plays a significant role in inter- and intralinking of fibrin molecules and protofibrils, endowing fibrin fibers with increased stiffness and elasticity

    Fibrinogen beta variants confer protection against coronary artery disease in a Greek case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although plasma fibrinogen levels are related to cardiovascular risk, data regarding the role of fibrinogen genetic variation in myocardial infarction (MI) or coronary artery disease (CAD) etiology remain inconsistent. The purpose of the present study was to investigate the effect of <it>fibrinogen A (FGA)</it>, <it>fibrinogen B (FGB) </it>and <it>fibrinogen G (FGG) </it>gene SNPs and haplotypes on susceptibility to CAD in a homogeneous Greek population.</p> <p>Methods</p> <p>We genotyped for rs2070022, rs2070016, rs2070006 in <it>FGA </it>gene, the rs7673587, rs1800789, rs1800790, rs1800788, rs1800787, rs4681 and rs4220 in <it>FGB </it>gene and for the rs1118823, rs1800792 and rs2066865 SNPs in <it>FGG </it>gene applying an arrayed primer extension-based genotyping method (APEX-2) in a sample of CAD patients (n = 305) and controls (n = 305). Logistic regression analysis was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs), before and after adjustment for potential confounders.</p> <p>Results</p> <p>None of the <it>FGA </it>and <it>FGG </it>SNPs and <it>FGA, FGB, FGG </it>and <it>FGA-FGG </it>haplotypes was associated with disease occurrence after adjustment. Nevertheless, rs1800787 and rs1800789 SNPs in <it>FGB </it>gene seem to decrease the risk of CAD, even after adjustment for potential confounders (OR = 0.42, 95%CI: 0.19-0.90, p = 0.026 and OR = 0.44, 95%CI:0.21-0.94, p = 0.039, respectively).</p> <p>Conclusions</p> <p><it>FGA </it>and <it>FGG </it>SNPs as well as <it>FGA, FGB, FGG </it>and <it>FGA-FGG </it>haplotypes do not seem to be important contributors to CAD occurrence in our sample. On the contrary, <it>FGB </it>rs1800787 and rs1800789 SNPs seem to confer protection to disease onset lowering the risk by about 50% in homozygotes for the minor alleles.</p

    A Genome-Wide Association Study of the Protein C Anticoagulant Pathway

    Get PDF
    The Protein C anticoagulant pathway regulates blood coagulation by preventing the inadequate formation of thrombi. It has two main plasma components: protein C and protein S. Individuals with protein C or protein S deficiency present a dramatically increased incidence of thromboembolic disorders. Here, we present the results of a genome-wide association study (GWAS) for protein C and protein S plasma levels in a set of extended pedigrees from the Genetic Analysis of Idiopathic Thrombophilia (GAIT) Project. A total number of 397 individuals from 21 families were typed for 307,984 SNPs using the Infinium® 317 k Beadchip (Illumina). Protein C and protein S (free, functional and total) plasma levels were determined with biochemical assays for all participants. Association with phenotypes was investigated through variance component analysis. After correcting for multiple testing, two SNPs for protein C plasma levels (rs867186 and rs8119351) and another two for free protein S plasma levels (rs1413885 and rs1570868) remained significant on a genome-wide level, located in and around the PROCR and the DNAJC6 genomic regions respectively. No SNPs were significantly associated with functional or total protein S plasma levels, although rs1413885 from DNAJC6 showed suggestive association with the functional protein S phenotype, possibly indicating that this locus plays an important role in protein S metabolism. Our results provide evidence that PROCR and DNAJC6 might play a role in protein C and free protein S plasma levels in the population studied, warranting further investigation on the role of these loci in the etiology of venous thromboembolism and other thrombotic diseases
    corecore