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Abstract

Background—Elevated plasma fibrinogen associates with arterial thrombosis in humans and

promotes thrombosis in mice by increasing fibrin formation and thrombus fibrin content.

Fibrinogen is composed of six polypeptide chains: (Aα, Bβ, and γ)2. Alternative splicing of the γ

chain leads to a dominant form (γA/γA) and a minor species (γA/γ’). Epidemiologic studies have

detected elevated γA/γ’ fibrinogen in patients with arterial thrombosis, suggesting this isoform

promotes thrombosis. However, in vitro data show that γA/γ’ is anticoagulant due to its ability to

sequester thrombin, and suggest its expression is upregulated in response to inflammatory

processes.

Objective—To determine whether γA/γ’ fibrinogen is prothrombotic in vivo.

Methods—We separated γA/γA and γA/γ’ fibrinogen from human plasma-purified fibrinogen

and determined effects on in vitro plasma clot formation, and in vivo thrombus formation and

circulating thrombin-antithrombin complexes in mice.

Results and Conclusions—Both γA/γA and γA/γ’ fibrinogen were cleaved by murine and

human thrombin and were incorporated into murine and human clots. When γA/γA or γA/γ’ was

spiked into plasma, γA/γA increased the fibrin formation rate to a greater extent than γA/γ’. In

mice, compared to controls, γA/γA infusion shortened the time to carotid artery occlusion,

whereas γA/γ’ infusion did not. Additionally, γA/γ’ infusion led to lower levels of plasma

thrombin-antithrombin complexes following arterial injury, whereas γA/γA infusion did not.
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These data suggest that γA/γ’ binds thrombin in vivo, and decreases prothrombotic activity.

Together, these findings indicate that elevated levels of γA/γA fibrinogen promote arterial

thrombosis in vivo, whereas γA/γ’ does not.
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INTRODUCTION

Fibrinogen is a 340 kDa glycoprotein that circulates in plasma at 2–4 mg/mL, but during

acute inflammation can exceed 7 mg/mL. Fibrinogen is composed of two sets of three

polypeptide chains: Aα, Bβ, and γ. Alternative splicing of the main γA chain leads to the γ’

chain. Molecules containing the γ’ chain circulate as a heterodimer with the γA chain (2Aα,

2Bβ, and γA/ γ’) and comprise 8–15% of total fibrinogen in healthy individuals [1, 2].

Elevated fibrinogen levels are associated with increased risk of arterial thrombosis [3–5],

and we previously showed that when mice are infused with unfractionated human fibrinogen

(~90% γA/γA and 10% γA/γ’) and subjected to FeCl3-mediated carotid artery injury,

elevated plasma fibrinogen shortens the time to vessel occlusion [6]. These findings suggest

elevated fibrinogen is a causative, etiologic agent in arterial thrombosis. However, the

specific contributions of γA/γA and γA/γ’ fibrinogen isoforms to thrombosis in vivo are

unknown.

In vitro studies to define the biochemical role of the γ’ chain have shown that clots made

with purified γA/γ’ fibrinogen polymerize at a slower rate than clots made with purified

γA/γA fibrinogen [7]. Additionally, the γ’ chain supports high affinity binding to thrombin

exosite II [8, 9], and studies have shown that thrombin binding to the γ’ chain competitively

inhibits thrombin-mediated platelet activation [10] and reduces thrombin-mediated FpB

cleavage [7], and factor VIII [11] and V [12] activation. These properties suggest γA/γ’

fibrinogen has anticoagulant activity in vitro. Conversely, the γ’ chain does not inhibit

thrombin-mediated cleavage of FpA [7, 13], and has been reported to support higher affinity

binding of FXIII than the γA chain [14], although more recent studies suggest only slightly

tighter [14], or even similar [15], binding of FXIII to the γA/γ’ isoform compared to the

γA/γA isoform. Additional studies in purified systems report contradictory effects of the γ’

chain on clot structure and mechanical properties, demonstrating that the γ’ chain induces

the formation of alternately smaller [7, 13, 16] or larger [17] pores, and stiffer [18] or less

stiff [17] clots. These conflicting observations make it difficult to predict the role of γA/γ’

fibrinogen under physiologic conditions in thrombosis in vivo.

The role of the human γ’ chain in thrombosis has previously been tested in two in vivo

studies. Since the murine γ’ chain does not contain the thrombin-binding sequence found on

the human γ’ chain, Mossesson et al. developed a transgenic mouse that replaced the murine

γ’ chain with the human γ’ chain [19]. Following electrolytic injury to the femoral vein,

there was no difference in thrombus volume between mice containing the human γ’ chain

and wild type (WT) controls, although the presence of the human γ’ chain reduced thrombus

volume in mice that were also heterozygous for the factor V Leiden mutation [19].
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However, interpretation of these findings is complicated by the higher total fibrinogen in

WT mice compared to mice expressing the human γ’ chain. In a baboon model in which an

arteriovenous shunt was placed between the femoral artery and vein, an 18 amino acid

peptide mimicking the γ’ chain C-terminus (γ’ 410–427) inhibited fibrin-rich thrombus

formation [11]. These studies suggest the γ’ chain reduces fibrin accumulation and is

antithrombotic during venous thrombosis.

Given these findings, it is interesting that retrospective epidemiological studies have

correlated elevated γA/γ’ fibrinogen levels with increased incidence of coronary artery

disease [20], myocardial infarction [21], and stroke [22–24]. In particular, the finding that

some patients have an increased γ’-to-total fibrinogen ratio [22–25] indicates γA/γ’

fibrinogen is not merely a biomarker of increased total fibrinogen, and suggests a specific

role for γA/γ’ in arterial thrombosis. However, these studies do not and cannot demonstrate

causality of γ’ chain-containing fibrinogen in thrombosis. The objective of our study was to

determine the contribution of γA/γA and γA/γ’ fibrinogen to arterial thrombosis.

METHODS

Proteins and Materials

Polyclonal rabbit anti-human fibrinogen antibody was from DAKOCytomation (Carpinteria,

CA). Monoclonal anti-fibrin(ogen) antibody (59D8) was a generous gift of Drs. Marschall

Runge (University of North Carolina [UNC]), Charles Esmon (Oklahoma College of

Medicine), and Rodney Camire (University of Pennsylvania). Mouse anti-human γ’ chain-

specific antibody (2.G2.H9) was from Millipore (Temecula, CA). Biotinylated secondary

antibodies were from Vector Laboratories (Burlingame, CA). The AlexaFluor-488 protein

labeling kit and 10% pre-cast Tris-glycine gels were from Invitrogen (Carlsbad, CA).

Human α-thrombin and murine thrombin were from Enzyme Research Laboratories (South

Bend, IN). Lipidated tissue factor (TF, Innovin) was from Siemens (Newark, DE).

Phospholipid vesicles (phosphatidylserine/phosphatidylcholine/phosphatidylethanolamine)

were prepared as described [26]. Bovine serum albumin was from Sigma-Aldrich (St. Louis,

MO). Peroxidase substrate was from KPL (Gaithersburg, MD).

Plasma preparation

Contact-inhibited human normal pooled plasma (hNPP) was prepared from 40 healthy

subjects (50% female, 68% nonwhite) as described [27], in a protocol approved by the UNC

Institutional Review Board. γA/γ’ fibrinogen levels in hNPP were measured by ELISA, as

described [28]. Murine normal pooled plasma (mNPP) was prepared by collecting blood

from 49 female C57Bl/6 mice by inferior vena cava (IVC) venipuncture into 3.2% sodium

citrate (1:9 ratio sodium citrate:blood). Pooled whole blood was centrifuged (4000xg, 20

minutes), and platelet-poor plasma was aliquoted and frozen at −80°C.

Isolation of γA/γA and γA/γ’ fibrinogen

The γA/γA and γA/γ’ fibrinogen variants were separated from human plasminogen-, von

Willebrand Factor-, and fibronectin-depleted human fibrinogen (Enzyme Research

Laboratories Ltd., Swansea, UK), based on the method described previously [7]. After
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purification, variants were concentrated using Vivaspin 20 MWCO 100,000 columns (GE

Healthcare, Uppsala, Sweden) and dialyzed into 20 mM N-2-hydroxyethylpiperazine-N′-2-

ethanesulfonic acid (pH 7.4) containing 150 mM NaCl (HBS). Fibrinogen concentration was

determined by absorbance at 280 nm using an extinction coefficient of 1.51 mL/(mg/cm).

Both variants were functionally active (>95%) in a standard clotability assay.

SDS-PAGE and western blotting

Fibrinogen preparations were assessed by 10% SDS-PAGE and Coomassie Brilliant Blue

staining or western blotting for total fibrinogen or fibrinogen γ’ chain. For western blots,

membranes were blocked with Tris-buffered saline with 1% Tween containing 5% milk,

washed, and probed sequentially with mouse-anti human γ’-specific primary antibody and

AlexaFluor-488 conjugated anti-mouse secondary antibody. Fluorescent signal was detected

on a Typhoon 900 FLA fluorescent scanner.

Clot formation with purified fibrin(ogen)

Purified fibrinogen, thrombin, and CaCl2 (0.5 mg/mL, 5 nM, and 10 mM, final,

respectively) were combined in 96-half-well plates and polymerization was monitored by

turbidity at 405 nm using SpectraMax Plus340 plate reader (Molecular Devices, Sunnyvale,

CA).

Clot formation in plasma

hNPP or mNPP was spiked with HBS (Control), or γA/γA or γA/γ’ fibrinogen, and clotting

was initiated with TF (1:30,000 dilution of Innovin, final), 10 mM CaCl2, and 4 µM

phospholipid vesicles in 96-well plates. Clot formation was monitored by turbidity at 405

nm.

Intravital microscopy

Procedures were approved by the UNC Institutional Animal Care and Use Committee.

Laser-induced thrombosis to cremaster muscle venules was performed as described [29].

Briefly, 6–8 week old male C57Bl/6 mice (Charles River Laboratories, Wilmington, MA)

were anesthetized and laser injuries were induced with an Ablate! photoablation system

equipped with an attenuatable 532 nm pulse laser (Intelligent Imaging Innovations). Five

minutes before injury, mice were injected via the retro-orbital plexus with AlexaFluor 595-

labeled anti-glycoprotein IX antibody (0.3 mg/g body weight; Emfret, Eibelstadt, Germany),

and AlexaFluor 647-labeled murine anti-fibrin antibody (0.2 mg/g body weight), and trace

amounts (5% of total fibrinogen) of AlexaFluor 488-labeled γA/γA or γA/γ’ fibrinogen. Five

venules maximum were studied per mouse.

FeCl3 thrombosis model

FeCl3 injury to carotid arteries was performed as described [6]. Briefly, 6–8 week old male

C57Bl/6 mice were anesthetized, and human fibrinogen or vehicle (HBS) was administered

through the left saphenous vein cannula on a per-weight basis 5 minutes before injury. The

right common carotid artery was exposed, dried and treated with FeCl3 (10% on 0.5×1.0-

mm filter paper) for 2 minutes. We specifically titrated the conditions to perform these
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experiments at a threshold at which some mice do not form thrombi, to allow for sensitivity

to both increased and decreased procoagulant activity. Blood flow was monitored by

Doppler ultrasonic flow probe, and the time to occlusion (TTO) was defined as the time

between FeCl3 administration and lack of flow for 60 consecutive seconds, as previously

described [6].

Measurement of circulating TAT complexes

TAT levels were measured by ELISA (Enzygnost TAT micro ELISA, Siemens) using

plasma prepared from IVC blood draws from mice subject to FeCl3 carotid artery

thrombosis. Samples showing hemolysis were excluded.

Statistical Methods

Descriptive statistics (mean, median, standard deviation [SD], standard error of the mean

[SEM]) were calculated. Groups were compared using Student’s t-tests (normally-

distributed data determined by Lilliefors test for normality) or Wilcoxon-Mann-Whitney

Rank Sum Tests (non-normally distributed data) in Kaleidagraph v4.1.3. Correlations were

performed using SAS 9.2 (SAS Inc., Cary, NC). P<0.05 was considered statistically

significant.

RESULTS

γA/γA fibrinogen increases the fibrin polymerization rate to a greater extent than γA/γ’
fibrinogen

Purified γA/γA fibrinogen contained all three fibrinogen chains (Aα, Bβ, and γ) at expected

molecular weights (Figures 1A-B). No γ’ chain was detected in γA/γA fibrinogen (Figure

1C), whereas purified γA/γ’ fibrinogen showed equal intensities of γA and γ’ bands (Figures

1A–B). We first clotted purified fibrinogens with purified human thrombin and followed

clotting by turbidity. Although fibrinogen γA/γA and γA/γ’ isoforms were not explicitly

depleted of FXIII, Allen et al. previously showed that the presence or absence of FXIII does

not affect differences in polymerization between γA/γA and γA/γ’ fibrinogen [17]. Indeed,

consistent with previous reports [7, 13, 17], purified γA/γA exhibited a faster polymerization

rate (2.7-fold, P<0.05) and higher final turbidity (1.5-fold, P<0.05) than purified γA/γ’

(Figure 1D, Table 1). Findings were similar when murine thrombin was used (Figure 1D,

Table 1), showing murine thrombin can convert human fibrinogen to fibrin.

To determine the effect of elevated γA/γA and γA/γ’ fibrinogen on plasma clot formation

during in situ thrombin generation, we spiked purified γA/γA, γA/γ’, or HBS (control) into

hNPP. The concentration of fibrinogen in hNPP was 3.1±0.1 mg/mL (100%) and baseline

concentration of γA/γ’ fibrinogen in hNPP was 0.42 mg/mL (13.5% of total fibrinogen). We

increased the total fibrinogen concentration to 3.5 (114%), 3.9 (127%), or 4.4 (143%)

mg/mL by spiking in purified γA/γA or γA/γ’, so that the γA/γ’-to-total fibrinogen ratios

ranged from 9.6–40.1% (Table 2). These levels span the range of γA/γ’ levels measured in

healthy individuals and patients with thrombosis [23–25, 30, 31]. Elevating either γA/γA or

γA/γ’ fibrinogen increased final clot turbidity compared to plasma spiked with HBS (Figure

2B, Table 2). When total fibrinogen was raised to 114%, neither γA/γA nor γA/γ’ fibrinogen
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increased the clot formation rate. However, elevating total fibrinogen to 127% or 143% with

γA/γA or γA/γ’ significantly and dose-dependently increased the clot formation rate versus

baseline (HBS). Notably, at each concentration, elevating total fibrinogen with γA/γA

increased the clot formation rate to a significantly greater extent than elevating total

fibrinogen with γA/γ’ (Figure 2C, Table 2). Linear regression analysis showed that the clot

formation rate correlated positively with elevated total fibrinogen (r=0.667, P<0.001) and

negatively with the γ’-to-total fibrinogen ratio (r=−0.0245, P=0.17), although the

relationship between γ’-to-total and clot formation rate did not reach significance. Moreover,

the level of γA/γA isoform correlated strongly with the clot formation rate (r=0.795,

P<0.001) whereas the level of γA/γ’ did not.

Spiking purified human γA/γA, γA/γ’, or HBS (Control) into mNPP produced similar

results. For these experiments, the fibrinogen concentration in mNPP was 2.4±0.2 mg/mL

(100%), and we spiked mNPP to 3.2 (135%) and 4.1 mg/mL (170%) with γA/γA or γA/γ’,

yielding human γ’-to total fibrinogen ratios ranging from 0–41.2%. Consistent with previous

observations [6], the final turbidity of murine plasma clots was lower than that of human

plasma clots, likely reflecting increased fibrin density of murine fibrin networks versus

human networks (unpublished observation). As in human plasma, both γA/γA and γA/γ'

increased the clot formation rate, but γA/γA increased the rate to a greater extent than γA/γ'

at each concentration tested (P<0.02, Figure 2F, Table 3). These findings suggest that during

in situ thrombin generation, both elevated γA/γA and γA/γ’ fibrinogen promote clot

formation, but γA/γA does so to a greater extent.

Both γA/γA and γA/γ’ fibrinogen are incorporated into murine thrombi in vivo

Drouet et al. previously suggested that an increased γ’-to-total fibrinogen ratio is detected in

patient plasmas because γA/γA is incorporated into platelet thrombi, whereas γA/γ’ is not

[25]. Therefore, we determined whether γA/γ’ was incorporated into thrombi in vivo. We

infused mice with AlexaFluor 594-labeled anti-platelet (anti-GPIX) antibody, AlexaFluor

647-labeled antibody against fibrin(ogen) (59D8), and trace amounts (5% of total

fibrinogen) of fluorescently-labeled γA/γA or γA/γ’ fibrinogen. We then triggered vascular

injury to the cremaster vessels and detected γA/γA or γA/γ’ fibrinogen within thrombi using

intravital microscopy. We initially performed this experiment with arterioles, but observed

substantial vessel constriction in response to the injury. However, the venule provided a

reasonable alternative that enabled us to avoid the issue of vasoconstriction while observing

platelet and fibrin(ogen) accumulation at the injury site in vivo. Figure 3 shows that both

γA/γA and γA/γ’ isoforms were incorporated into murine thrombi in vivo.

Following FeCl3 injury, γA/γA, but not γA/γ’, fibrinogen shortens the time to artery
occlusion

To determine the effect of elevated circulating γA/γA and γA/γ’ fibrinogen on arterial

thrombosis, we infused mice with HBS or purified human γA/γA, γA/γ’, or unfractionated

fibrinogen and induced thrombosis via FeCl3 application to the carotid artery. Both human

and mouse fibrinogen can be cleaved by human and murine thrombin, cross-linked by factor

XIIIa, and digested by plasmin [32]. Additionally, human fibrinogen circulates in mouse

plasma, and is incorporated into murine thrombi (Figure 1D, [6, 33–35]). For these
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experiments, we obtained total fibrinogen levels of 135% and 170% of normal levels, with

human-γ’-to-total fibrinogen ratios of 0%, 25.9%, and 41.2%, consistent with ratios found in

normal and pathological conditions [23–25, 30, 31, 36].

Consistent with previous findings, following FeCl3 injury, there was no significant

difference in TTO between control mice or mice infused to 135% mg/mL total fibrinogen

with either γA/γA or γA/γ’ (data not shown) [6]. When total fibrinogen was raised to 170%

with γA/γA fibrinogen, the median TTO was faster than that of mice infused with HBS

(5.48±0.50 versus 7.25±3.03 minutes [median±SEM], P<0.05, Figure 4A), similar to that

seen in mice infused with unfractionated fibrinogen. However, raising the level of

fibrinogen to 170% with γA/γ’ fibrinogen did not shorten the median TTO compared to

controls (Figure 4A). Moreover, 7.25 minutes after FeCl3 injury, 100% and 86% of mice

infused with unfractionated or γA/γA fibrinogen, respectively, had an occluded vessel,

whereas only 50% of mice infused with γA/γ’ fibrinogen developed vessel occlusion (Figure

4B). Together, these data indicate that elevated γA/γA fibrinogen promotes arterial

thrombosis, whereas elevated γA/γ’ does not.

Following FeCl3 injury, mice infused with γA/γ’ fibrinogen have lower circulating TAT
complexes than mice infused with γA/γA fibrinogen

The γ’ chain supports high affinity binding to thrombin exosite II [8, 9], and prior studies

have shown that γA/γ’ fibrinogen has anticoagulant properties (antithrombin I activity) in

vitro [10–12]. To determine the effect of γA/γ’ on procoagulant activity in vivo, we

measured TAT complexes in murine plasma following FeCl3 injury and stable vessel

occlusion. Whereas mice infused with unfractionated or γA/γA fibrinogen had similar

circulating TAT complexes as HBS-infused mice, mice infused with γA/γ’ had significantly

lower circulating TAT complexes (6.2±8.4 versus 18.9±10.9 ng/mL [median±SEM] for

γA/γ’ and HBS-infused mice, respectively, P<0.01, Figure 5), consistent with the concept

that thrombin binding to γA/γ’ fibrinogen sequesters thrombin [10–12, 37] and protects it

from inhibition by antithrombin. These findings suggest γA/γ’ fibrinogen binds and

sequesters thrombin in vivo and limits thrombin activity following vascular injury.

DISCUSSION

Although epidemiologic studies have associated elevated plasma fibrinogen with arterial

thrombosis [3–5], the operant pathogenic mechanisms have been controversial. We

previously showed that increased total plasma fibrinogen directly promotes arterial

thrombosis in mice [6]. Herein, we separately tested the role of γA/γA and γA/γ’ fibrinogen

and show that both elevated γA/γA and γA/γ’ increased the plasma clot formation rate, but

that γA/γA increased the rate to a greater extent than γA/γ’. Although both γA/γA and γA/γ’

fibrinogen were incorporated into murine clots, γA/γA fibrinogen shortened the TTO,

whereas γA/γ’ did not. Interestingly, compared to controls, mice infused with γA/γ’

fibrinogen had lower levels of circulating plasma TAT complexes following arterial injury,

whereas mice infused with γA/γA did not, suggesting that γA/γ’ fibrinogen binds and

sequesters thrombin in vivo. Together, our data indicate that γA/γ’ fibrinogen is not
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prothrombotic in vivo and may even have a protective role in preventing elevated total

fibrinogen levels from promoting thrombosis.

Our data support the premise that γA/γ’ fibrinogen has both procoagulant and anticoagulant

properties and exhibits both of these activities during thrombosis in vivo. Similar to γA/γA

fibrinogen, γA/γ’ increased the fibrin formation rate and final turbidity, though to a lesser

extent than γA/γA. Consequently, increased total fibrinogen levels, via either increased

γA/γA or γA/γ’, would be expected to promote fibrin formation. However, unlike γA/γA,

γA/γ’ fibrinogen exhibits antithrombin I activity in vitro [10–12, 37] and in vivo (Figure 5).

Thus, our finding that elevated γA/γA fibrinogen shortened the TTO, but elevated γA/γ’ did

not, suggests that the net effect of γA/γ’ fibrinogen’s opposing procoagulant and

anticoagulant activities yielded no change in the TTO. These data suggest that a peptide

representing the C-terminus of the γ’ chain would have strong anticoagulant effects in vivo,

since the procoagulant properties of the full length fibrinogen molecule would not be

present, whereas the thrombin binding properties of the γ’ chain would decrease circulating

thrombin. Indeed, this effect was previously demonstrated during in vivo thrombosis, in

which Lovely et al. saw decreased platelet and fibrin accumulation in the presence of γ’

chain peptide [11].

Although previous studies have compared isolated γA/γA and γA/γ’ fibrinogens in purified

systems, only one has done so during in situ thrombin generation in plasma. Using plasmas

from apparently healthy Black South Africans, Pieters et al. correlated total fibrinogen

levels, γA/γ’ fibrinogen levels, and the γ’-to-total fibrinogen ratio with the plasma clot

formation rate and turbidity change [38]. Their data suggest that the clot formation rate

increases with total fibrinogen, but decreases with elevated γ’-to-total fibrinogen ratio. Our

data extend these findings in a system that enabled us to precisely control fibrinogen isoform

levels and avoid variability between donor plasmas. Consistent with Pieters et al., we found

the clot formation rate correlated positively with elevated total fibrinogen. Importantly, the

level of γA/γA isoform correlated strongly with the clot formation rate, whereas the level of

γA/γ’ did not, suggesting the increase in clot formation rate caused by elevated total

fibrinogen is due to γA/γA fibrinogen.

Two prior studies evaluated the effect of the γ’ chain on thrombosis in vivo. Those studies

were limited by differences in the total fibrinogen level expressed by WT and human γ’-

expressing mice [19] and use of isolated γ’ peptide rather than full length γA/γ’ fibrinogen

[11]. Moreover, Mosesson et al. [19] evaluated γA/γ’ fibrinogen in a venous thrombosis

model, and although the arteriovenous shunt model used by Lovely et al. [11] included

aspects of arterial thrombosis, it did not recapitulate endothelial denudation and

subendothelial exposure associated with plaque rupture and arterial thrombus formation.

Consequently, our study supports and extends the prior findings in several important ways.

First, our infusion strategy enabled us to tightly-control the level of circulating γA/γA and

γA/γ’ fibrinogen, allowing us to specifically attribute effects to the levels of isoform and

total fibrinogen. Second, our study demonstrated the antithrombin I properties of the full-

length form of the γ’ chain. Third, our findings extend previous data from venous

thrombosis to arterial pathology. This extension is important since the role of γA/γ’ in

arterial thrombosis has been controversial. Our findings provide important evidence that
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γA/γA fibrinogen is causative in the etiology of arterial thrombosis, whereas γA/γ’

fibrinogen is not.

Given our findings showing that γA/γ’ fibrinogen does not promote arterial thrombosis, it

remains unclear why epidemiological studies find a positive association between elevated

γA/γ’ fibrinogen and arterial thrombosis. Previous studies have suggested that clots formed

from γA/γ’ fibrinogen are more resistant to lysis, and conflicting studies report abnormal

structure and mechanical stability in γ’-chain containing clots [7, 17, 18]. Thus, γA/γ’

fibrinogen may produce clots with increased stability that are detected because they persist

longer than clots that contain γA/γA. Interestingly, hypofibrinolysis is correlated with

increased risk of arterial thrombosis in young (<~50) [39, 40], but not older (>~50)

individuals [41, 42], suggesting abnormal clot stability explains some, but not all, of the

mechanisms leading to arterial thrombosis. Future studies are warranted to determine the

effect of the γA/γ’ isoform on arterial clot stability.

Interestingly, Rein-Smith et al. recently showed interleukin-6 preferentially up-regulates

hepatocyte production of γA/γ’ fibrinogen compared to γA/γA [43]. These data suggest

γA/γ’ (“antithrombin I”) expression is upregulated to limit endogenous procoagulant activity

triggered by inflammation. Indeed, C-reactive protein is elevated in patients with a history of

arterial thrombosis [23], reflecting the proinflammatory pathology. Increased γA/γ’ levels

detected in patients after arterial thrombosis are likely a consequence of disease rather than

cause, and reflect an innate, antithrombotic response to inflammation. Although our

fibrinogen infusion/acute thrombosis model enabled us to isolate and investigate the

immediate, direct effects of elevated γA/γA and γA/γ’ on thrombus formation, it did not

recapitulate the inflammatory process associated with atherosclerosis. Consequently, long-

term exposure to circulating γA/γ’ fibrinogen may have additional effects on plaque

formation and/or stability. Notably, however, Mosesson et al. did not report evidence of

chronic inflammation or atherosclerosis in their model of chronically-elevated fibrinogen γ’

levels [19] suggesting even chronic exposure to elevated γA/γ’ fibrinogen levels does not

cause thrombosis.

In summary, our results show that both γA/γA and γA/γ’ fibrinogen increased the fibrin

formation rate in plasma, but γA/γA fibrinogen accelerated the rate to a greater extent than

γA/γ’ fibrinogen. After arterial injury, γA/γA fibrinogen promoted thrombosis, whereas

γA/γ’ did not. Mice infused with γA/γ’ had lower levels of circulating TAT complexes,

suggesting that following vascular injury, γA/γ’ fibrinogen binds thrombin in vivo and limits

thrombin activity. Our data establish independent roles of fibrinogen γA/γA and γA/γ’ in

arterial thrombosis, and suggest γA/γA fibrinogen promotes thrombosis, whereas γA/γ’

sequesters thrombin and protects against procoagulant processes induced by inflammation.
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Figure 1. Purified fibrinogen contains all three chains (Aα, Bβ, and γA and/or γ’) at the expected
molecular weights and is equally cleaved by human and mouse thrombin
Unfractionated (UF), or purified γA/γA, or γA/γ’ fibrinogen were reduced and separated by

10% SDS-PAGE and detected by: A) Coomassie Brilliant Blue staining, B) polyclonal anti-

fibrin(ogen) antibody, or C) 2.G2.H9 antibody against the γ’ chain. D) Purified human

γA/γA (squares) or γA/γ’ (diamonds) fibrinogen was clotted in the presence of CaCl2 and

human (closed symbols) or murine (open symbols) thrombin. Data show mean±SD, for

experiments with human (n=3) and mouse (n=2) thrombin.
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Figure 2. Both γA/γA and γA/γ’ fibrinogen accelerate clotting in human and mouse plasma
A–C) hNPP was spiked with γA/γA or γA/γ’ to increase total fibrinogen to 114%, 127%, or

143% of normal (symbols appear in figure legend), and clot formation was triggered by

addition of TF and CaCl2. D-F) mNPP was spiked with human γA/γA or γA/γ’ to increase

total fibrinogen to 135% or 170% of normal (symbols appear in figure legend) and clot

formation was triggered by addition of TF and CaCl2. A, D) Polymerization was monitored

by turbidity; for clarity, only a subset of points is shown. B, C, E, F) The contribution of

increasing total fibrinogen with γA/γA (solid bars) or γA/γ’ (striped bars) on final turbidity

Walton et al. Page 14

J Thromb Haemost. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(B, E) and fibrin formation rate (C, F) in human (B, C) and mouse (E, F) plasma. Dashed

lines represent final turbidity and clot formation rate of HBS controls. Data show means,

n=3. *p<0.05 versus HBS; #p<0.05 versus γA/γA.
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Figure 3. Intravital microscopy shows both γA/γA and γA/γ’ isoforms are incorporated into
murine thrombi
Venules were visualized in the cremaster muscle of mice infused with HBS (control) or

AlexaFluor 594-labeled anti-platelet (anti-GPIX) antibody, AlexaFluor 647-labeled anti-

fibrin antibody, and purified γA/γA or γA/γ’ directly labeled with AlexaFluor 488.

Thrombosis was triggered via laser injury. Flow is indicated by white arrows. Colors are:

platelets (red), fibrin(ogen) (green), and fibrin (blue). In the merged image, colors are:

platelets plus fibrin(ogen) (pink), platelets plus fibrin (purple), and fibrin(ogen) plus fibrin

(teal). Images show representative thrombi from 3–4 mice with 14–20 injuries total.
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Figure 4. γA/ γA fibrinogen shortens the time to vessel occlusion after arterial injury, but γA/γ’
does not
Mice were infused with HBS, unfractionated (UF), γA/γA, or γA/γ’ fibrinogen to 170%,

total fibrinogen. Thrombosis was induced by FeCl3 application to the carotid artery and

TTO was determined by Doppler flow probe. In vessels that did not occlude, the TTO was

recorded as 40 minutes. A) Each point represents a separate mouse. Lines indicate median

values, *p<0.05 versus HBS. B) Percent of mice occluded at 7.25 minutes (the median TTO

of HBS-infused mice), using the data from (A); 100%, 86%, and 50% of UF-, γA/γA-, and

γA/γ’-infused mice, respectively, had occluded vessels at this time.
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Figure 5. Following arterial injury, mice infused with γA/γ’ fibrinogen have reduced circulating
TAT complexes
TAT levels were measured in plasmas collected from mice subjected to the FeCl3 carotid

artery thrombosis. Box plots indicate medians and upper and lower quartiles, *p<0.05 versus

HBS.
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