25 research outputs found
Gramicidin S identified as a potent inhibitor for cytochrome bd-type quinol oxidase
AbstractGramicidin S, a cationic cyclic decapeptide, exhibits the potent antibiotic activity through perturbation of lipid bilayers of the bacterial membrane. From the screening of natural antibiotics, we identified gramicidin S as a potent inhibitor for cytochrome bd-type quinol oxidase from Escherichia coli. We found that gramicidin S inhibited the oxidase with IC50 of 3.5ΞΌM by decreasing Vmax and the affinity for substrates but showed the stimulatory effect at low concentrations. Our findings would provide a new insight into the development of gramicidin S analogs, which do not share the target and mechanism with conventional antibiotics
Role of Elg1 protein in double strand break repair
The inaccurate repair of DNA double-strand breaks (DSBs) can result in genomic instability, and additionally cell death or the development of cancer. Elg1, which forms an alternative RFC-like complex with RFC2-5, is required for the maintenance of genome stability in Saccharomyces cerevisiae, and its function has been linked to DNA replication or damage checkpoint response. Here, we show that Elg1 is involved in homologous recombination (HR)-mediated DSB repair. Mutants of elg1 were partially defective in HR induced by methylmethanesufonate (MMS) and phleomycin. Deletion of ELG1 resulted in less efficient repair of phleomycin-induced DSBs in G(2)/M phase-arrested cells. During HR between MAT and HML loci, Elg1 associated with both the MAT locus near the HO endonuclease-induced DSB site, and the HML homologous donor locus. The association of Elg1 with the MAT locus was not dependent on Rad52. However, Elg1 association with the HML locus depended on Rad52. Importantly, we found that two of the later steps in HR-mediated repair of an HO endonuclease-induced DSB, primer extension after strand invasion and ligation, were less efficient in elg1 mutants. Our results suggest that Elg1 is involved in DSB repair by HR
Dpb11, the budding yeast homolog of TopBP1, functions with the checkpoint clamp in recombination repair
Dpb11 is required for the loading of DNA polymerases Ξ± and Ι on to DNA in chromosomal DNA replication and interacts with the DNA damage checkpoint protein Ddc1 in Saccharomyces cerevisiae. The interaction between the homologs of Dpb11 and Ddc1 in human cells and fission yeast is thought to reflect their involvement in the checkpoint response. Here we show that dpb11-1 cells, carrying a mutated Dpb11 that cannot interact with Ddc1, are defective in the repair of methyl methanesulfonate (MMS)-induced DNA damage but not in the DNA damage checkpoint at the permissive temperature. Epistatic analyses suggested that Dpb11 is involved in the Rad51/Rad52-dependent recombination pathway. Ddc1 as well as Dpb11 were required for homologous recombination induced by MMS. Moreover, we found the in vivo association of Dpb11 and Ddc1 with not only the HO-induced double-strand break (DSB) site at MAT locus but also the donor sequence HML during homologous recombination between MAT and HML. Rad51 was required for their association with the HML donor locus, but not with DSB site at the MAT locus. In addition, the association of Dpb11 with the MAT and HML locus after induction of HO-induced DSB was dependent on Ddc1. These results indicate that, besides the involvement in the replication and checkpoint, Dpb11 functions with Ddc1 in the recombination repair process itself
Ctf18 is required for homologous recombination-mediated double-strand break repair
The efficient repair of double-strand breaks (DSBs) is crucial in maintaining genomic integrity. Sister chromatid cohesion is important for not only faithful chromosome segregation but also for proper DSB repair. During DSB repair, the Smc1βSmc3 cohesin complex is loaded onto chromatin around the DSB to support recombination-mediated DSB repair. In this study, we investigated whether Ctf18, a factor implicated in the establishment of sister chromatid cohesion, is involved in DSB repair in budding yeast. Ctf18 was recruited to HO-endonuclease induced DSB sites in an Mre11-dependent manner and to damaged chromatin in G2/M phase-arrested cells. The ctf18 mutant cells showed high sensitivity to DSB-inducible genotoxic agents and defects in DSB repair, as well as defects in damage-induced recombination between sister chromatids and between homologous chromosomes. These results suggest that Ctf18 is involved in damage-induced homologous recombination