651 research outputs found

    Binary AdS black holes coupled to a bath in Type IIB

    Full text link
    We construct Type IIB string theory setups which, via double holography, realize two gravitational systems in separate AdS spaces which interact with each other and with a non-gravitational bath. We employ top-down string theory solutions with concrete field theory duals in the form of 4d N=4\mathcal N=4 SYM BCFTs and a first-principles notion of double holography. The setups are used to realize pairs of `near' and `far' black holes from the perspective of the bath, which exchange Hawking radiation with each other and radiate into the bath. We identify three phases for the entropy in the bath characterized as no island, partial island and full island, and discuss the entropy curves. The setups differ from the black hole binaries observed in gravitational wave experiments but may capture certain aspects.Comment: 28 pages, 10 figure

    Entanglement and topology in RG flows across dimensions: caps, bridges and corners

    Get PDF
    We quantitatively address the following question: for a QFT which is partially compactified, so as to realize an RG flow from a D-dimensional CFT in the UV to a d-dimensional CFT in the IR, how does the entanglement entropy of a small spherical region probing the UV physics evolve as the size of the region grows to increasingly probe IR physics? This entails a generalization of spherical regions to setups without full Lorentz symmetry, and we study the associated entanglement entropies holographically. We find a tight interplay between the topology and geometry of the compact space and the evolution of the entanglement entropy, with universal transitions from ‘cap’ through ‘bridge’ and ‘corner’ phases, whose features reflect the details of the compact space. As concrete examples we discuss twisted compactifications of 4d N = 4 SYM on T2, S2 and hyperbolic Riemann surfaces

    Electrical resistivity tomography determines the spatial distribution of clay layer thickness and aquifer vulnerability, Kandal Province, Cambodia

    Get PDF
    Despite being rich in water resources, many areas of South East Asia face difficulties in securing clean water supply. This is particularly problematic in regions with a rapidly growing population. In this study, the spatial variability of the thickness of a clay layer, controlling surface – groundwater interactions that affect aquifer vulnerability, was investigated using electrical resistivity tomography (ERT). Data were acquired along two transects, showing significant differences in the imaged resistivities. Borehole samples were analyzed regarding particle density and composition, and linked to their resistivity. The obtained relationships were used to translate the field electrical resistivities into lithologies. Those revealed considerable variations in the thickness of the clay layer, ranging from 0 m up to 25 m. Geochemical data, highlighting zones of increased ingress of surface water into the groundwater, confirmed areas of discontinuities in the clay layer, which act as preferential flow paths. The results may guide urban planning of the Phnom Penh city expansion, in order to supply the growing population with safe water. The presented approach of using geophysics to estimate groundwater availability, accessibility, and vulnerability is not only applicable to Kandal Province, Cambodia, but also to many other areas of fast urbanization in South East Asia and beyond

    Piperacillin-Tazobactam versus Other Antibacterial Agents for Treatment of Bloodstream Infections Due to AmpC β-Lactamase-Producing Enterobacteriaceae

    Get PDF
    In vivo induction of AmpC beta-lactamases produces high-level resistance to many beta-lactam antibiotics in Enterobacteriaceae, often resulting in the need to use carbapenems or cefepime (FEP). The clinical effectiveness of piperacillin-tazobactam (TZP), a weak inducer of AmpC beta-lactamases, is poorly understood. Here, we conducted a case-control study of adult inpatients with bloodstream infections (BSIs) due to Enterobacter, Serratia, or Citrobacter species from 2009 to 2015 to assess outcomes following treatment with TZP compared to FEP or meropenem (MEM). We collected clinical data and screened all isolates for the presence of ampC alleles by PCR. Primary study outcomes were 30-day mortality and persistent bacteremia at \u3e/=72 h from the time of treatment initiation. Of 493 patients with bacteremia, 165 patients met the inclusion criteria, of which 88 were treated with TZP and 77 with FEP or MEM. To minimize differences between covariates, we carried out propensity score matching, which yielded 41 matched pairs. Groups only differed by age, with patients in the TZP group significantly older (P = 0.012). There were no significant differences in 30-day mortality, persistent bacteremia, 7-day mortality, or treatment escalation between the two treatment groups, including in the propensity score-matched cohort. PCR amplification and sequencing of ampC genes revealed the presence of ampC in isolates with cefoxitin MICs below 16 mug/ml, in particular in Serratia spp., and demonstrated that these alleles were highly genetically diverse. Taken together, TZP may be a valuable treatment option for BSIs due to AmpC beta-lactamase-producing Enterobacteriaceae, diminishing the need for broader-spectrum agents. Future studies are needed to validate these findings

    Production Process Modelling Architecture to Support Improved Cyber-Physical Production Systems

    Get PDF
    With the proliferation of intelligent networks in industrial environments, manufacturing SME’s have been in a continuous search for integrating and retrofitting existing assets with modern technologies that could provide low-cost solutions for optimizations in their production processes. Their willingness to support a technological evolution is firmly based on the perception that, in the future, better tools will guarantee process control, surveillance and maintenance. For this to happen, the digitalization of valuable and extractable information must be held in a cost-effective manner, through contemporary approaches such as IoT, creating the required fluidity between hardware and software, for implementing Cyber-Physical modules in the manufacturing process. The goal of this work is to develop an architecture that will support companies to digitize their machines and processes through an MDA approach, by modeling their production processes and physical resources, and transforming into an implementation model, using contemporary CPS and IoT concepts, to be continuously improved using forecasting/predictive algorithms and analytics.authorsversionpublishe

    cc-Functions in Flows Across Dimensions

    Full text link
    We explore the notion of cc-functions in renormalization group flows between theories in different spacetime dimensions. We discuss functions connecting central charges of the UV and IR fixed point theories on the one hand, and functions which are monotonic along the flow on the other. First, using the geometric properties of the holographic dual RG flows across dimensions and the constraints from the null energy condition, we construct a monotonic holographic cc-function and thereby establish a holographic cc-theorem across dimensions. Second, we use entanglement entropies for two different types of entangling regions in a field theory along the RG flow across dimensions to construct candidate cc-functions which satisfy one of the two criteria but not both. In due process we also discuss an interesting connection between corner contributions to the entanglement entropy and the topology of the compact internal space. As concrete examples for both approaches, we holographically study twisted compactifications of 4d N=4\mathcal N=4 SYM and compactifications of 6d N=(2,0)\mathcal N=(2,0) theories.Comment: 49 pages, 17 figure

    Time-lapse monitoring of climate effects on earthworks using surface waves

    Get PDF
    The UK’s transportation network is supported by critical geotechnical assets (cuttings/embankments/dams) that require sustainable, cost-effective management, while maintaining an appropriate service level to meet social, economic, and environmental needs. Recent effects of extreme weather on these geotechnical assets have highlighted their vulnerability to climate variations. We have assessed the potential of surface wave data to portray the climate-related variations in mechanical properties of a clay-filled railway embankment. Seismic data were acquired bimonthly from July 2013 to November 2014 along the crest of a heritage railway embankment in southwest England. For each acquisition, the collected data were first processed to obtain a set of Rayleigh-wave dispersion and attenuation curves, referenced to the same spatial locations. These data were then analyzed to identify a coherent trend in their spatial and temporal variability. The relevance of the observed temporal variations was also verified with respect to the experimental data uncertainties. Finally, the surface wave dispersion data sets were inverted to reconstruct a time-lapse model of S-wave velocity for the embankment structure, using a least-squares laterally constrained inversion scheme. A key point of the inversion process was constituted by the estimation of a suitable initial model and the selection of adequate levels of spatial regularization. The initial model and the strength of spatial smoothing were then kept constant throughout the processing of all available data sets to ensure homogeneity of the procedure and comparability among the obtained V S VS sections. A continuous and coherent temporal pattern of surface wave data, and consequently of the reconstructed V S VS models, was identified. This pattern is related to the seasonal distribution of precipitation and soil water content measured on site

    Time-lapse monitoring of fluid-induced geophysical property variations within an unstable earthwork using P-wave refraction

    Get PDF
    A significant portion of the UK’s transportation system relies on a network of geotechnical earthworks (cuttings and embankments) that were constructed more than 100 years ago, whose stability is affected by the change in precipitation patterns experienced over the past few decades. The vulnerability of these structures requires a reliable, cost- and time-effective monitoring of their geomechanical condition. We have assessed the potential application of P-wave refraction for tracking the seasonal variations of seismic properties within an aged clay-filled railway embankment, located in southwest England. Seismic data were acquired repeatedly along the crest of the earthwork at regular time intervals, for a total period of 16 months. P-wave first-break times were picked from all available recorded traces, to obtain a set of hodocrones referenced to the same spatial locations, for various dates along the surveyed period of time. Traveltimes extracted from each acquisition were then compared to track the pattern of their temporal variability. The relevance of such variations over time was compared with the data experimental uncertainty. The multiple set of hodocrones was subsequently inverted using a tomographic approach, to retrieve a time-lapse model of VP for the embankment structure. To directly compare the reconstructed VP sections, identical initial models and spatial regularization were used for the inversion of all available data sets. A consistent temporal trend for P-wave traveltimes, and consequently for the reconstructed VP models, was identified. This pattern could be related to the seasonal distribution of precipitation and soil-water content measured on site
    corecore